Open Journal Systems

Mengevaluasi Struktur Beton Pada Bangunan Eksisting Dengan Penambahan Sistem Base Isolation Berdasarkan Seismic Fragility

       Sri - Wanto

Abstract


Abstrak

Secara prinsip perkuatan struktur adalah proses teknis yang dirancang untuk meningkatkan kapasitas, kekuatan, atau stabilitas suatu struktur yang mungkin telah mengalami penurunan performa akibat peningkatan beban seperti beban gempa yang dimana menjadi konsentrasi mitigasi pada bangunan saat ini. Pada penelitian ini akan menambahkan perkuatan struktur pada bangunan eksisting dengan menambahkan yaitu base isolation pada setiap kolom. Sistem penambahan base isolation adalah metode yang digunakan dalam rekayasa struktur untuk melindungi bangunan dari kerusakan yang disebabkan oleh gempa bumi. Tujuannya adalah mengurangi transfer energi seismik dari tanah ke struktur bangunan, sehingga mengurangi dampak gempa pada bangunan tersebut. Sistem base isolation berfungsi dengan cara memisahkan bangunan dari getaran tanah yang disebabkan oleh gempa. Ini dicapai dengan memasang perangkat isolasi di antara fondasi dan struktur atas bangunan. Perangkat isolasi biasanya berupa bantalan atau lapisan elastomerik (seperti karet) atau perangkat yang menggunakan pegas dan damper. Perangkat ini dirancang untuk menyerap dan meredam energi seismik. Dengan mengurangi transfer energi dari tanah ke struktur bangunan, base isolation membantu mengurangi gaya yang bekerja pada struktur dan meningkatkan daya tahan bangunan terhadap kerusakan. Analisis akan dilakukan dengan memodelkan bangunan struktur tersebut dengan perangkat software seismostruct. Untuk metode yang digunakan yaitu menggunakan Dynamic Time History yang dimana hasil dari pemodelan tersebut akan menghasilkan sebuah kurva hubungan antara simpangan antar segmen/ Interstory Drift Ratio (ISDR). Selain itu diperoleh kurva histerisis dan spektrum kapasitas yang bisa digunakan sebagai hasil data yang dimana akan menghasilkan sebuah kurva kerapuhan yang digunakan sebagai evaluasi pengaruh dari penambahan perkuatan struktur tersebut.

Kata kunci: Base Isolation, Dynamic Time History, Interstory Drift Ratio, Kurva Kerapuhan

Abstract

In principle, structural reinforcement is a technical process designed to increase the capacity, strength, or stability of a structure that may have decreased in performance due to increased loads such as earthquake loads, which are the concentration of mitigation in buildings today. This research will add structural reinforcement to the existing building by adding base isolation to each column. The base isolation system is a method used in structural engineering to protect buildings from damage caused by earthquakes. The goal is to reduce the transfer of seismic energy from the ground to the building structure, thereby reducing the impact of the earthquake on the building. Base isolation systems function by separating the building from the ground vibrations caused by the earthquake. This is achieved by installing isolation devices between the foundation and the upper structure of the building. Isolation devices are usually pads or elastomeric layers (such as rubber) or devices that use springs and dampers. These devices are designed to absorb and dampen seismic energy. By reducing the transfer of energy from the ground to the building structure, base isolation helps reduce the forces acting on the structure and increases the building's resistance to damage. The analysis will be carried out by modeling the building structure with seismostruct software. For the method used is using Dynamic Time History where the results of the modeling will produce a relationship curve between the intersegment deviation / Interstory Drift Ratio (ISDR). In addition, hysteresis curves and capacity spectra are obtained which can be used as data results which will produce a fragility curve which is used to evaluate the effect of adding reinforcement to the structure.

Keywords: Base Isolation, Dynamic Time History, Interstory Drift Ratio, Fragility Curve


  http://dx.doi.org/10.31544/jtera.v9.i2.2024.33-44

Keywords


Base Isolation, Dynamic Time History, Interstory Drift Ratio, Kurva Kerapuhan

Full Text:

  PDF

References


REFERENSI

K. S. Pribadi et al., Learning from past earthquake disasters: The need for knowledge management system to enhance infrastructure resilience in Indonesia, Int. J. Disaster Risk Reduct., vol. 64, hal. 102424, Okt 2021, doi: 10.1016/j.ijdrr.2021.102424.

R. J. Stern, The evolution of plate tectonics, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 376, no. 2132, hal. 20170406, Nov 2018, doi: 10.1098/rsta.2017.0406.

C. Doglioni dan G. Panza, Polarized Plate Tectonics, 2015, hal. 1167. doi: 10.1016/bs.agph.2014.12.001.

I. P. Pudja, Focal validation mechanism for Lombok earthquake with image analysis of satellite radar and crust movement GPS observation, Sustinere J. Environ. Sustain., vol. 4, no. 1, hal. 2432, Apr 2020, doi: 10.22515/sustinere.jes.v4i1.92.

T. Raimondo, M. Hand, dan W. J. Collins, Compressional intracontinental orogens: Ancient and modern perspectives, Earth-Science Rev., vol. 130, hal. 128153, Mar 2014, doi: 10.1016/j.earscirev.2013.11.009.

G. Liek Yeo dan C. Allin Cornell, Building life-cycle cost analysis due to mainshock and aftershock occurrences, Struct. Saf., vol. 31, no. 5, hal. 396408, Sep 2009, doi: 10.1016/j.strusafe.2009.01.002.

P. Supendi et al., Foreshockmainshockaftershock sequence analysis of the 14 January 2021 (Mw 6.2) MamujuMajene (West Sulawesi, Indonesia) earthquake, Earth, Planets Sp., vol. 73, no. 1, hal. 106, Des 2021, doi: 10.1186/s40623-021-01436-x.

X.-Y. Cao, D. Shen, D.-C. Feng, C.-L. Wang, Z. Qu, dan G. Wu, Seismic retrofitting of existing frame buildings through externally attached sub-structures: State of the art review and future perspectives, J. Build. Eng., vol. 57, hal. 104904, Okt 2022, doi: 10.1016/j.jobe.2022.104904.

V. Pertile, A. Stella, L. De Stefani, dan R. Scotta, Seismic and Energy Integrated Retrofitting of Existing Buildings with an Innovative ICF-Based System: Design Principles and Case Studies, Sustainability, vol. 13, no. 16, hal. 9363, Agu 2021, doi: 10.3390/su13169363.

D. De Domenico dan G. Ricciardi, Earthquake-resilient design of base isolated buildings with TMD at basement: Application to a case study, Soil Dyn. Earthq. Eng., vol. 113, hal. 503521, Okt 2018, doi: 10.1016/j.soildyn.2018.06.022.

S. Wu, J. Li, X. Chen, dan Z. Guan, Seismic residual displacement for structural system with partial self-centering ability, J. Build. Eng., vol. 95, hal. 110123, Okt 2024, doi: 10.1016/j.jobe.2024.110123.

S. Amiri dan E. Bojrquez, Residual displacement ratios of structures under mainshock-aftershock sequences, Soil Dyn. Earthq. Eng., vol. 121, hal. 179193, Jun 2019, doi: 10.1016/j.soildyn.2019.03.021.

D. Losanno, N. Ravichandran, dan F. Parisi, Seismic fragility of base-isolated single-storey unreinforced masonry buildings equipped with classical and recycled rubber bearings in Himalayan regions, J. Build. Eng., vol. 45, hal. 103648, Jan 2022, doi: 10.1016/j.jobe.2021.103648.

D. Losanno, N. Ravichandran, dan F. Parisi, Seismic fragility models for base?isolated unreinforced masonry buildings with fibre?reinforced elastomeric isolators, Earthq. Eng. Struct. Dyn., vol. 52, no. 2, hal. 308334, Feb 2023, doi: 10.1002/eqe.3761.

M. S. Yavas, Z. Gao, N. Mekaoui, dan T. Saito, A machine learning-based hybrid seismic analysis of a lead rubber bearing isolated building specimen, Soil Dyn. Earthq. Eng., vol. 174, hal. 108217, Nov 2023, doi: 10.1016/j.soildyn.2023.108217.

J. C. De la Llera, C. Lders, P. Leigh, dan H. Sady, Analysis, testing, and implementation of seismic isolation of buildings in Chile, Earthq. Eng. Struct. Dyn., vol. 33, no. 5, hal. 543574, Apr 2004, doi: 10.1002/eqe.360.

F. Mazza, M. Mazza, dan A. Vulcano, Base-isolation systems for the seismic retrofitting of r.c. framed buildings with soft-storey subjected to near-fault earthquakes, Soil Dyn. Earthq. Eng., vol. 109, hal. 209221, Jun 2018, doi: 10.1016/j.soildyn.2018.02.025.

A. De Luca dan L. G. Guidi, State of art in the worldwide evolution of base isolation design, Soil Dyn. Earthq. Eng., vol. 125, hal. 105722, Okt 2019, doi: 10.1016/j.soildyn.2019.105722.

V. Lup??teanu, L. Soveja, R. Lup??teanu, dan C. Ching?lat?, Installation of a base isolation system made of friction pendulum sliding isolators in a historic masonry orthodox church, Eng. Struct., vol. 188, hal. 369381, Jun 2019, doi: 10.1016/j.engstruct.2019.03.040.

K. K. Kuria dan O. K. Kegyes-Brassai, Nonlinear Static Analysis for Seismic Evaluation of Existing RC Hospital Building, Appl. Sci., vol. 13, no. 21, hal. 11626, Okt 2023, doi: 10.3390/app132111626.

L. Tian, H. Pan, dan R. Ma, Probabilistic seismic demand model and fragility analysis of transmission tower subjected to near-field ground motions, J. Constr. Steel Res., vol. 156, hal. 266275, Mei 2019, doi: 10.1016/j.jcsr.2019.02.011.

H. Pan, L. Tian, X. Fu, dan H. Li, Sensitivities of the seismic response and fragility estimate of a transmission tower to structural and ground motion uncertainties, J. Constr. Steel Res., vol. 167, hal. 105941, Apr 2020, doi: 10.1016/j.jcsr.2020.105941.

C. Petridis dan D. Pitilakis, Fragility curve modifiers for reinforced concrete dual buildings, including nonlinear site effects and soilstructure interaction, Earthq. Spectra, vol. 36, no. 4, hal. 19301951, Nov 2020, doi: 10.1177/8755293020919430.

B. Xu, X. Wang, C.-S. W. Yang, dan Y. Li, Probabilistic curvature limit states of corroded circular RC bridge columns: Data-driven models and application to lifetime seismic fragility analyses, Earthq. Spectra, vol. 40, no. 4, hal. 28052835, Nov 2024, doi: 10.1177/87552930241255091.

G. Pianese, N. Van Engelen, H. Toopchi-Nezhad, dan G. Milani, High-damping fiber-reinforced elastomeric seismic isolator in different boundary conditions: An experimental insight, Eng. Struct., vol. 300, hal. 117199, Feb 2024, doi: 10.1016/j.engstruct.2023.117199.

A. Yusra, A. Mustafa, M. Refiyanni, dan Z. Zakia, Performance Structural Analysis of U2C Building with the Kobe Earthquake Spectrum, Int. J. Eng. Sci. Inf. Technol., vol. 3, no. 1, hal. 3646, Feb 2023, doi: 10.52088/ijesty.v3i1.413.

S. Wanto, S. Sangadji, dan H. A. Saifullah, Seismic retrofitting of existing steel structures with X-bracing, AIP Conf. Proc., vol. 2482, no. February, 2023, doi: 10.1063/5.0112776.

M. Rahma, S. Sangadji, Z. F. Virawan, H. A. Saifullah, dan R. H. Devi, Evaluating Retrofitting Strategies of Low-to-Mid-Rise Reinforced Concrete Structure Based on Its Seismic Fragility, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 13, no. 2, 2023, doi: 10.18517/ijaseit.13.2.17480.

P. P. Sumedi, S. Sangadji, dan H. A. Saifullah, The fragility curve of low-to-mid-rise steel frame buildings retrofitted with inverted V-bracing, in AIP Conference Proceedings, 2023. doi: 10.1063/5.0128995.




DOI: http://dx.doi.org/10.31544/jtera.v9.i2.2024.33-44
Abstract 45 View    PDF viewed = 23 View

Refbacks



Copyright (c) 2024 JTERA (Jurnal Teknologi Rekayasa)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright @2016-2023 JTERA (Jurnal Teknologi Rekayasa) p-ISSN 2548-737X e-ISSN 2548-8678.

��Lisensi Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

JTERA Editorial Office:
Politeknik Sukabumi
Jl. Babakan Sirna 25, Sukabumi 43132, West Java, Indonesia
Phone/Fax: +62 266215417
Whatsapp: +62 81809214709
Website: https://jtera.polteksmi.ac.id
E-mail: [email protected]