Pengembangan Alat Penanggulangan Air Lindi Melalui Reaktor *Biofilter*

Jemi Jamhur^{1,2#}, Dede Lia Zariatin³, Agri Suwandi³

¹Magister Teknik Mesin, Universitas Pancasila
Jl. Borobudur No. 7 Menteng Jakarta Pusat DKI Jakarta 10320, Indonesia

²Program Keahlian Teknik Mesin, SMK YP Fatahillah 1 Kramatwatu
Jl. Griya Serdang Indah No. 229 Serdang Kec. Kramatwatu Kab. Serang Provinsi Banten 42116, Indonesia

³Program Studi Teknik Mesin, Fakultas Teknik, Universitas Pancasila
Jl. Raya Lenteng Agung No. 56-80 Srengseng Sawah Jagakarsa Jakarta 12640, Indonesia

[#]jemijamhur47@guru.smk.belajar.id

Abstrak

Surat kabar Suara Pembaruan yang berafiliasi dengan beritasatu.com mengabarkan bahwa pada tanggal 8 Juni 2012 Dinas Lingkungan Hidup Kota Serang telah melakukan uji laboratorium sampel air sungai yang menjadi muara pembuangan air lindi TPSA Cilowong. Hasil uji menyatakan bahwa air sungai tidak memenuhi baku mutu yang ditentukan dimana kadar BOD sebesar 297,6 mg/L melebihi ambang batas yang di persyaratkan yakni 150 mg/L, begitupun dengan kadar COD sebesar 688,05 mg/L melebihi ambang batas yang diijinkan sebesar 300 mg/L. Penelitian ini bertujuan untuk membuat prototipe instalasi peralatan pengolah air lindi dalam skala laboratorium yang dilakukan dengan metode eksperimental sebagai upaya mencari alternatif solusi permasalahan tersebut. Hasil penelitian ini menghasilkan prototipe instalasi pengolahan air lindi berupa reaktor *biofilter* yang ditambahkan *filter canister* dengan sistem operasi *batch*. Instalasi ini bukan hanya mampu menghasilkan air lindi hasil olahan yang memenuhi baku mutu akan tetapi juga bisa mengurangi kadar polutan air lindi secara signifikan sebesar 89%. Dengan menggunakan zat koagulan berupa tawas (alumunium sulfat) sebesar 2 gr/L, kadar BOD pada air lindi dapat diturunkan dari 417,5 mg/L menjadi 45,5 mg/L. Kadar *Chemical Oxygen Demand* (COD) air lindi yang sebelumnya sebesar 912,86 mg/L mampu diturunkan menjadi 95,68 mg/L.

Kata kunci: air lindi, biofilter, BOD (Biological Oxygen Demand), COD (Chemical Oxygen Demand)

Abstract

The Suara Pembaruan newspaper, which is affiliated with beritasatu.com, reported that on June 8, 2012 the Serang City Environmental Service had conducted laboratory tests on samples of river water which became the estuary for leachate disposal at the Cilowong TPSA. The test results state that the river water does not meet the specified quality standards where the BOD level of 297.6 mg/L exceeds the required threshold of 150 mg/L, as well as the COD level of 688.05 mg/L exceeds the allowable threshold. of 300 mg/L. This study aims to make a prototype installation of leachate treatment equipment on a laboratory scale carried out by experimental methods as an effort to find alternative solutions to these problems. The results of this study produced a prototype of a leachate treatment plant in the form of a biofilter reactor with a canister filter added with a batch operating system. This installation is not only able to produce processed leachate that meets quality standards but can also significantly reduce leachate pollutant levels by 89%. By using a coagulant in the form of alum (aluminum sulfate) of 2 g/L, the level of BOD in leachate can be reduced from 417.5 mg/L to 45.5 mg/L. The level of Chemical Oxygen Demand (COD) of leachate which was previously 912.86 mg/L can be reduced to 95.68 mg/L.

Keywords: leachate, biofilter, BOD (Biological Oxygen Demand), COD (Chemical Oxygen Demand)

I. PENDAHULUAN

Masalah umum yang hingga kini dihadapi oleh seluruh negara di dunia khususnya Indonesia adalah tentang isu lingkungan, salah satunya terkait dengan sampah. Indonesia sebagai negara berkembang, seiring dengan laju pertumbuhan penduduknya yang terus meningkat, permasalahan tentang sampah ini menjadi masalah yang mendapat perhatian lebih. Bentuk perhatian negara terhadap

permasalahan ini adalah dengan adanya Undang-Undang Nomor 18 Tahun 2008 [1] tentang pengelolaan sampah, terbitnya Peraturan Presiden Republik Indonesia Nomor 97 Tahun 2017 [2] tentang kebijakan dan strategi nasional pengelolaan sampah rumah tangga dan sampah sejenis sampah rumah tangga, dan pedoman teknis mengenai penyusunan kebijakan dan strategi pengelolaan sampah daerah yang tertuang dalam Peraturan Menteri Lingkungan Hidup dan Kehutanan Indonesia Republik Nomor P.10/MENLHK/SETJEN/PLB.0/4/2018 [3].

Menurut Indeks Kualitas Lingkungan Hidup (IKLH) 2017 [4] yang dipublikasikan oleh Kementerian Lingkungan Hidup dan Kehutanan, terjadi fluktuatif nilai IKLH nasional dari tahun 2011 sampai dengan tahun 2017 dalam hal Indeks Kualitas Air (IKA). Ini berarti dalam enam tahun terakhir kualitas air belum menunjukkan perubahan yang signifikan. Hasil analisis pada tahun 2017 menunjukkan bahwa nilai IKA nasional menurun dibandingkan tahun 2016. Provinsi Banten di tahun 2017 memiliki nilai IKA 35,98 merupakan provinsi yang berkontribusi paling besar dalam penurunan IKA nasional yaitu -1,153.

Salah satu variabel yang mempengaruhi nilai IKA adalah perubahan beban pencemaran serta upaya pemulihan (restorasi) pada sumber air. Terkait dengan hal tersebut, Tempat Pembuangan Sampah Akhir (TPSA) Cilowong yang merupakan tempat pembuangan akhir sampah pencemaran akibat aktifitas pengolahan sampah di kawasan TPSA tersebut. Air yang berasal dari rembesan sampah yang biasa disebut dengan air lindi (leachate) mencemari lingkungan sekitar TPSA terutama daerah aliran sungai yang bermuara hingga sungai Cibanten. Air lindi didefinisikan [5] sebagai campuran cair yang dibentuk oleh infiltrasi air ke dalam lapisan limbah yang selanjutnya berbagai reaksi mengalami hidrologi biogeokimia. Karakteristik lindi TPSA diwakili oleh tingginya COD, total karbon organik (TOC), BOD, pH, nitrogen ammonis (NH3-N), dan kandungan logam berat. Selanjutnya juga bahwa bahan organik yang ada dalam lindi bertindak sebagai polutan utama karena memiliki kecenderungan untuk mencemari sumber daya tanah dan air di sekitarnya. Oleh karena itu, menjadi perlu untuk mengolah air lindi TPSA dan menghilangkan polutan sebelum dibuang ke sumber dava air dan tanah.

Pada tanggal 8 Juni 2012 Badan Lingkungan Hidup Daerah (BLHD) Kota Serang melakukan uji laboratorium terhadap sampel air lindi yang diambil dari muara sungai TPSA Cilowong. Dari hasil uji laboratorium diketahui bahwa air sungai telah terkontaminasi oleh air lindi dan dinyatakan tidak memenuhi baku mutu. Kadar unsur pecemar yang terlarut dalam air sungai tersebut melebihi ambang batas maksimum yang diperbolehkan antara lain: Sulfida 0,152 mg/L, Amoniak Bebas 9,18 mg/L, Biological Oxygen Demand (BOD) 297,6 mg/L, Chemical Oxygen Demand (COD) 688,05 mg/L, dan Crom 0,46 mg/L. Informasi tersebut diwartakan oleh surat kabar Suara Pembaruan melalui beritasatu.com yang terbit tahun 2012 [6].

Pada tahun 2012, Mochtar Hadiwidodo dkk [7] melakukan penelitian terkait pengolahan air lindi dengan proses kombinasi biofilter anaerob-aerob dan wetland. Penelitian dilakukan dalam skala laboratorium untuk mengetahui efisiensi penyisihan BOD, COD, TSS, amoniak, nitrit, dan nitrat menggunakan reaktor biofilter dan wetland. Lindi yang digunakan berasal dari TPA Ngronggo, Salatiga. Penelitian tersebut menarik kesimpulan antara lain proses biofilter anaerob terbukti lebih efektif dalam mengolah air lindi akibat karakteristik dasar air lindi yang tidak memiliki kandungan oksigen terlarut (DO = 0). Proses biofilter ini berkaitan erat dengan waktu tinggal. Hal ini ditunjukkan pada data hasil penelitian yang menuniukan efisiensi penyisihan parameter pencemar pada waktu tinggal 25 jam lebih baik bila dibandingkan waktu tinggal yang lain. Pada reaktor wetland, semakin banyak jumlah tumbuhan scirpus grossius (lingi) yang digunakan maka semakin tinggi penurunan konsentrasi COD dari air lindi TPA Ngronggo. Di tahun 2015, Abas Sato dkk [8] melakukan penelitian mengenai pengolahan limbah tahu secara anaerobik-aerobik kontinyu. Penelitian dilakukan secara kuantitatif dengan melakukan eksperimen. Prosedur penelitian meliputi penyiapan peralatan percobaan, pencampuran limbah tahu dengan efektif mikroorganisme. pemasukkan limbah tahu ke dalam reaktor anaerob, pengaliran limbah ke dalam reaktor aerob dan pengujian hasil pengolahan limbah. Metode pengujian berdasarkan SNI 06-6989.15-2004. Parameter Penelitiannya meliputi COD (Chemical Oxygen Demand), TSS (Total Suspended Solid), derajat keasaman (pH), dan biogas. Dari penelitian tersebut di tarik kesimpulan antara lain hasil dari penelitian ini menunjukkan bahwa penurunan nilai kadar organik pada limbah cair industri tahu sangat dipengaruhi oleh lama waktu tinggal pada setiap prosesnya. Semakin lama waktu tinggal, efisiensi yang dihasilkan semakin tinggi pula. Hasil penelitian ini sesuai dengan standar buang lingkungan dengan hasil COD dibawah 300 mg/L. Waktu tinggal berpengaruh terhadap kadar bahan organik, dimana penurunan nilai kadar COD dalam limbah paling tinggi terjadi pada proses anaerob dalam waktu tinggal selama 8 hari sebesar 86,3%.

Penelitian ini bertujuan untuk membuat prototipe instalasi peralatan pengolah air lindi dalam skala laboratorium. Penelitian dilakukan menggunakan metode eksperimental sebagai upaya mencari alternatif solusi permasalahan. Pada penelitian ini dilakukan pengolahan air lindi secara lengkap mulai dari primary treatment, secondary treatment, hingga tertiary treatment dengan reaktor sebagai secondary treatment-nya. biofilter Kontribusi penelitian yang diharapkan adalah menghasilkan prototipe alat pengolah air lindi skala laboratorium vang mampu menghasilkan kualitas air lindi yang lebih baik untuk parameter BOD dan COD, serta dalam proses pengolahannya tidak memerlukan waktu tinggal air lindi yang lama.

II. METODE PENELITIAN

A. Parameter Uji Laboratorium

Parameter uji laboratorium air lindi dalam penelitian ini merujuk pada Peraturan Menteri Lingkungan Hidup dan Kehutanan Nomor P.59/Menlhk/Setjen/Kum.1/7/2016. Dalam peraturan ini mengatur 7 parameter fisika dan kimia, seperti terlihat pada Tabel 1. Penelitian ini menitik-beratkan kepada dua parameter utama pencemaran air yakni BOD dan COD yang menjadi latar belakang permasalahan.

B. Proses Pengolahan Air Lindi

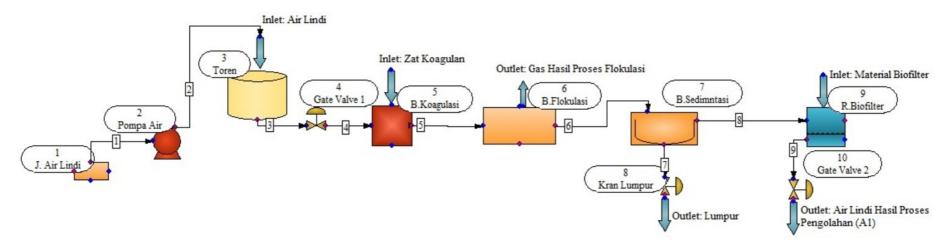
Proses pengolahan yang dilakukan untuk mengurangi kadar polutan yang terkandung pada air lindi pada instalasi pengolah menggunakan sistem operasi satu proses (batch), dimana air lindi mengalir melewati unit-unit peralatan pengolah mulai dari jerigen air lindi hingga berakhir pada keran air yang dipasang pada unit terakhir instalasi pengolahan dan pada akhirnya air lindi hasil pengolahan siap untuk diambil sebagai sampel uji laboratorium. Proses pengolahan air menggunakan dua varian alat yaitu varian 1 dan varian 2. Setiap varian alat terdiri dari 2 unit instalasi proses pengolahan air lindi yang disebut sebagai skema. Jadi penelitian ini menggunakan 4 unit instalasi yang berasal dari 2 varian alat.

Proses pengolahan air lindi menggunakan varian 1 skema pertama seperti yang terlihat pada Gambar 1, dimulai dari proses memompakan air lindi dari jerigen menuju toren sampai pada air lindi melewati reaktor *biofilter* untuk dilakukan proses penyaringan secara alami. Pada proses pengolahan ini mendapatkan air hasil pengolahan yang diberikan kode A₁.

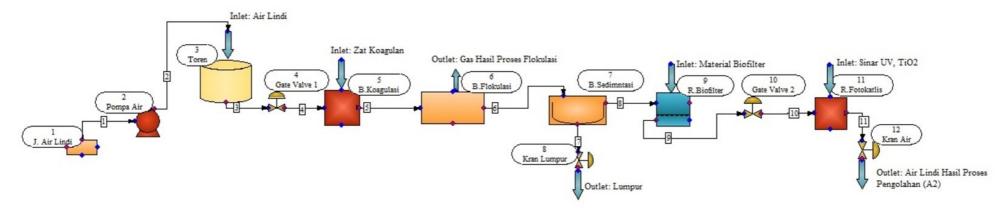
Tabel 1. Parameter fisika kimia uji laboratorium [9]

		Kadar paling tinggi			
No.	Parameter	Satuan	Nilai maksimum yang diperbolehkan		
1.	pН	-	6-9		
2.	BOD	mg/L	150		
3.	COD	mg/L	300		
4.	TSS	mg/L	100		
5.	N Total	mg/L	60		
6.	Merkuri/Air Raksa	mg/L	0,005		
7.	Kadmium	mg/L	0,1		

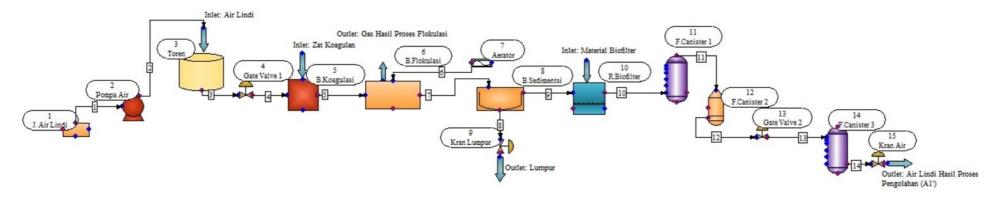
Proses pengolahan air lindi menggunakan varian 1 skema kedua yang ditunjukan oleh Gambar 2. Alurnya dari proses memompakan air lindi di jerigen menuju toren sampai dengan proses pengolahan pada reaktor biofilter adalah sama seperti proses varian 1 skema pertama, akan tetapi ada penambahan proses akhir yaitu air lindi dialirkan ke dalam reaktor fotokatalis dan di dalam reaktor ini dilakukan proses kimia selama empat jam untuk memperoleh air hasil pengolahan (A₂). Proses kimia yang dimaksud adalah proses fotokalis dimana di dalam reaktor ini air lindi diberikan campuran zat katalis berupa TiO2 kemudian dilakukan pengadukan secara terus menerus serta diberikan pancaran sinar ultraviolet (UV) sepanjang proses berlangsung.

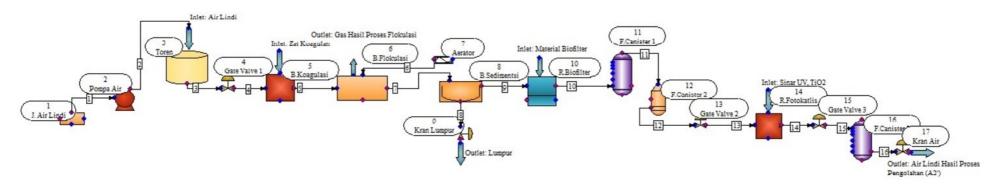

Proses pengolahan air lindi dengan varian 2 skema pertama seperti yang terlihat pada Gambar 3. Skema ini merupakan proses pengolahan air lindi dimana alurnya hampir serupa seperti varian sebelumnya, bedanya ada adalah adanya penambahan tiga *filter canister* yang dipasang setelah proses reaktor *biofilter* sebagai proses tersiernya yang menghasilkan air hasil pengolahan dengan kode A₁'.

Proses pengolahan air lindi dengan varian 2 skema kedua yang ditampilkan oleh Gambar 4 merupakan diagram proses yang menjelaskan kelanjutan dari proses *treatment* pengolahan air lindi instalasi reaktor *biofilter* varian 2 skema pertama yakni ada kombinasi dengan reaktor fotokatalis yang menghasilkan air hasil pengolahan dengan kode A₂'.


III. HASIL DAN PEMBAHASAN

A. Prototipe Instalasi Pengolahan Air Lindi Varian 1


Prototipe instalasi pengolah air lindi varian 1 yang ditampilkan oleh Gambar 5 terdiri dari dua


Gambar 1. Diagram proses pengolahan air lindi menggunakan varian 1 skema pertama

Gambar 2. Diagram proses pengolahan air lindi dengan varian 1 skema kedua

Gambar 3. Diagram proses pengolahan air lindi dengan varian 2 skema pertama

Gambar 4. Diagram proses pengolahan air lindi dengan varian 2 skema kedua

kelompok yakni kelompok rangka instalasi dan kelompok instalasi pengolahan air lindi. Pada kelompok rangka instalasi sendiri terdiri atas rangka tampungan air baku lindi (toren) dan rangka instalasi pengolahan air lindi. Sementara itu kelompok instalasi pengolahan air lindi secara lengkap terdiri dari jerigen, pompa air, toren, motor pengaduk (mixer) bak koagulasi dari mesin kipas angin box, bak koagulasi, bak flokulasi, bak sedimentasi, reaktor biofilter, motor pengaduk (mixer) reaktor fotokatalis dari mesin kipas angin box, reaktor fotokatalis yang di dalamnya terdapat lampu UV jenis TL sebanyak 4 buah yang memiliki daya masing-masing 8 Watt, dan 2 buah ember.

B. Prototipe Instalasi Pengolah Air Lindi Varian 2

Prototipe instalasi pengolah air lindi varian 2 pada Gambar 6 menyajikan bahwa secara konstruksi varian ini hampir sama seperti halnya instalasi pengolah air lindi varian 1, yang membedakan varian 2 dengan varian 1 terletak pada pergantian motor pengaduk (mixer) bak koagulasi dan motor pengaduk reaktor fotokatalis dari yang tipe motor kipas angin digantikan dengan motor listrik berdaya 1/4 HP yang biasa digunakan untuk kerja mekanik dengan beban besar. Selain itu juga, adanya penambahan aerator akuarium yang dipasang pada bak flokulasi, penambahan 3 buah *filter* tabung (canister) dimana 2 buah filter di pasang di outlet reaktor biofilter masing-masing berkapasitas 4 liter dan 0,8 liter, 1 filter tabung kapasitas 4 liter dipasang pada outlet reaktor fotokatalis serta penambahan 4 buah lampu UV yang memiliki spesifikasi sama.

C. Hasil Uji Laboratorium Baku Air Lindi Sebelum Proses Pengolahan

Sampel air lindi sebelum dilakukan proses pengolahan yang ditampilkan pada Gambar 7 awalnya dilakukan uji laboratorium, tujuannya

Gambar 5. Prototipe instalasi pengolah air lindi varian 1

Gambar 6. Prototipe instalasi pengolah air lindi varian 2

Gambar 7. Sampel air lindi sebelum diolah (sampel A_0)

adalah untuk dijadikan sebagai pembanding dan sebagai data awal dalam proses perencanaan pembuatan prototipe alat. Sampel air lindi tersebut selanjutnya diberikan kode A_0 .

Secara visual warna sampel air lindi sebelum diolah seperti yang tersaji pada Gambar 7 terlihat cokelat pekat. Hasil uji laboratorium baku air lindi sebelum pengolahan tersebut disajikan pada Tabel 2. Dapat diketahui bahwa ada tiga parameter uji yang tidak memenuhi baku mutu untuk sampel A₀ yaitu BOD, COD dan N-Total seperti yang ditampilkan pada Tabel 2. Nilai baku mutu yang diperbolehkan untuk BOD maksimul 150 mg/L, sementara hasil uji menunjukan hasil 417,5 mg/L ada selisih sebesar 267,5 mg/L. Untuk COD nilai maksimum yang diperbolehkan adalah 300 mg/L, uji laboratorium diperoleh hasil 912,86 mg/L ada selisih sebesar 612,86 mg/L. Untuk N-Total diperoleh hasil uji laboratorium 150,10 mg/L lebih besar dari baku mutu maksimum yang diperbolehkan sebesar 60 mg/L dan ada selisih 90,10 mg/L. Setiap selisih nilai tersebut merupakan parameter polutan air lindi yang harus dikurangi dengan proses pengolahan sehingga baku mutu yang diperbolehkan. memenuhi Sementara itu parameter lain seperti pH, TSS, Merkuri dan Kadmium memenuhi baku sesuai dengan aturan.

D. Hasil Uji Laboratorium Air Lindi Sesudah Pengolahan menggunakan Prototipe Instalasi Pengolahan Varian 1 Skema Pertama

air lindi hasil pengolahan dengan menggunakan prototipe instalasi pengolahan varian 1 skema pertama dapat dilihat pada Gambar 8. Berdasarkan referensi [10], penggunaan koagulan (tawas) pada proses ini adalah 2 gram tawas untuk setiap liter air lindi. Penggunaan tawas untuk proses koagulasi ini bertujuan untuk mengikat partikel-partikel tersuspensi yang berasal polutan air lindi, supaya zat koagulan bekerja maksimal dilakukan proses pengadukan cepat dengan menggunakan motor listrik kipas angin. Visual air lindi yang tersaji pada Gambar 8 merupakan air lindi hasil pengolahan yang dihasilkan oleh instalasi varian 1 skema pertama, diberi kode A₁. Hasil uji laboratoriumnya dapat dilihat pada Tabel 3. Hasil uji laboratorium sampel A₁ pada Tabel 3 menghasilkan data bahwa sampel tersebut untuk parameter BOD, COD, TSS dan Ntotal tidak memenuhi baku mutu yang disyaratkan.

E. Hasil Uji Laboratorium Air Lindi Sesudah Pengolahan menggunakan Prototipe Instalasi Pengolahan Varian 1 Skema Kedua

Skema kedua varian 1 melanjutkan proses skema pertama yakni proses perlakuan akhir berupa proses kimia fotokatalis. Pada proses fotokatalis ini sinar UV sebagai sumber cahaya berasal dari lampu jenis *tube lamp* (TL) berjumlah 4 buah dan memiliki daya total 32 Watt, sedangkan bahan katalis yang digunakan berupa titanium dioksida (TiO₂) dengan komposisi 1 gram TiO2 untuk setiap 1 liter air lindi di dalam reaktor fotokatalis [11]. Gambar 9

menunjukkan visual air lindi hasil proses pengolahan varian 1 skema kedua yang menghasilkan sampel A2 langsung dilakukan pengecekan pH sesaat setelah proses pengolahan itu berakhir. Hasil uji laboratorium, air lindi hasil pengolahan dengan instalasi varian 1 skema kedua (A₂) disajikan pada Tabel 4.

Keempat parameter pengujian yakni BOD, COD, TSS dan N-total pada sampel A₂ yang diolah menggunakan prototipe varian 1 skema kedua pada Tabel 4 dapat disimpulkan tidak memenuhi baku mutu.

F. Hasil Uji Laboratorium Air Lindi Sesudah Pengolahan menggunakan Prototipe Instalasi Pengolahan Varian 2 Skema Pertama

Seperti halnya pada varian 1 skema pertama penggunaan tawas untuk proses koagulasi dengan komposisi 2 gram tawas untuk setiap liter air lindi. Lama waktu proses pengolahan mulai dari proses koagulasi hingga air lindi masuk ke dalam reaktor biofilter berlangsung selama lebih kurang 1 jam dengan bukaan valve 1/4 bukaan. Pengambilan sample A₁' dilakukan pada saat air landi sudah melalui proses koagulasi hingga melalui filter canister 3 tanpa mengaktifkan reaktor fotokatalis. Gambar 10 merupakan visual air lindi hasil pengolahan dengan menggunakan prototipe instalasi pengolahan varian 2 skema pertama. Air lindi hasil proses pengolahan menggunakan prototipe instalasi varian 2 skema pertama seperti yang terlihat pada Gambar 10, secara fisik terlihat lebih jerih bila dibandingkan dengan air lindi hasil olahan pada proses sebelumnya. Hasil uji laboratorium sampel A₁' tersaji pada Tabel 5.

Tabel 2. Hasil uji laboratorium air lindi sampel A_0 terhadap baku mutu maksimum yang diperbolehkan

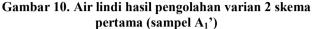
No.	Baku mutu air lindi yang diperbolehkan (Menurut Permen LHK Tahun 2016)			Sampe	Sampel air lindi sebelum pengolahan (A ₀)		
	Parameter	Kadar maksimum	Satuan	Hasil	Selisih	Status	
1	pН	6-9	-	8,21	0,00	Memenuhi baku mutu	
2	BOD	150	mg/L	417,50	-267,50	Tidak memenuhi baku mutu	
3	COD	300	mg/L	912,86	-612,86	Tidak memenuhi baku mutu	
4	TSS	100	mg/L	77,00	23,00	Memenuhi baku mutu	
5	N Total	60	mg/L	150,10	-90,10	Tidak memenuhi baku mutu	
6	Merkuri/Air Raksa	0,005	mg/L	0,001	0,004	Memenuhi baku mutu	
7	Kadmium	0,1	mg/L	0,008	0,092	Memenuhi baku mutu	

Gambar 8. Air lindi hasil olahan varian 1 skema pertama (sampel A_1)

Gambar 9. Air lindi hasil olahan varian 1 skema kedua (sampel A_2)

Tabel 3. Hasil uji laboratorium untuk sampel A_1 terhadap baku mutu maksimum yang diperbolehkan

No.	Baku mutu air lindi yang diperbolehkan (Menurut Permen LHK Tahun 2016)			Sampel air lindi sebelum pengolahan (A ₁)		
	Parameter	Kadar maksimum	Satuan	Hasil	Selisih	Status
1	pН	6-9	-	7,69	0	Memenuhi baku mutu
2	BOD	150	mg/L	305	-155	Tidak memenuhi baku mutu
3	COD	300	mg/L	628,55	-328,55	Tidak memenuhi baku mutu
4	TSS	100	mg/L	169,14	-69,14	Tidak memenuhi baku mutu
5	N Total	60	mg/L	245,42	-185,42	Tidak memenuhi baku mutu
6	Merkuri/Air raksa	0,005	mg/L	0,001	0,004	Memenuhi baku mutu
7	Kadmium	0,1	mg/L	0,008	0,092	Memenuhi baku mutu


Tabel 4. Hasil uji laboratorium untuk sampel A2 terhadap baku mutu maksimum yang diperbolehkan

No.	Baku mutu air lindi yang diperbolehkan (Menurut Permen LHK Tahun 2016)			Sampel air lindi sebelum pengolahan (A2)			
110.	Parameter	Kadar maksimum	Satuan	Hasil	Selisih	Status	
1	pН	6-9	-	7,98	0	Memenuhi baku mutu	
2	BOD	150	mg/L	445	-295	Tidak memenuhi baku mutu	
3	COD	300	mg/L	942,82	-642,82	Tidak memenuhi baku mutu	
4	TSS	100	mg/L	153,13	-53,13	Tidak memenuhi baku mutu	
5	N Total	60	mg/L	284,48	-224,48	Tidak memenuhi baku mutu	
6	Merkuri/Air raksa	0,005	mg/L	0,001	0,004	Memenuhi baku mutu	
7	Kadmium	0,1	mg/L	0,008	0,092	Memenuhi baku mutu	

Untuk tiga parameter pengujian yakni BOD, COD dan TSS yang tersaji pada Tabel 5 pada proses pengolahan sebelumnya tidak memenuhi baku mutu, dengan menggunakan prototipe instalasi pengolah air lindi varian 2 skema pertama dapat disimpulkan bahwa sampel A₁' sudah memenuhi baku mutu.

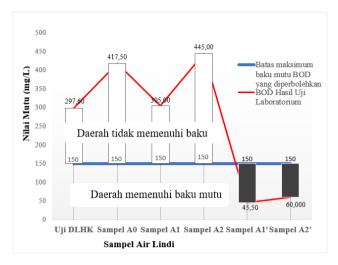
G. Hasil Uji Laboratorium Air Lindi Sesudah Pengolahan menggunakan Prototipe Instalasi Pengolahan Varian 2 Skema Kedua Pengoperasian prototipe instalasi pengolah air lindi varian 2 skema kedua merupakan kelanjutan proses pengolahan air lindi dari varian 2 skema pertama dengan menambahkan proses fotokatalis. Komposisi zat katalis yang digunaan menggunakan referensi dari jurnal Tuty Emilia Agustina dkk. yaitu 0,4% berat katalis pada setiap volume 1 liter air lindi [12]. Pengoperasian skema kedua ini berlangsung selama 4 jam di dalam reaktor fotokatalis dengan lampu UV serta motor listrik tetap beroperasi.

Gambar 11. Air lindi hasil pengolahan varian 2 skema kedua (Sampel A₂')

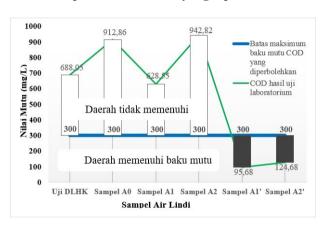
Tabel 5. Hasil uji laboratorium untuk sampel A_1 ' terhadap baku mutu maksimum yang diperbolehkan

No.	Baku mutu air lindi yang diperbolehkan (Menurut Permen LHK Tahun 2016)			Sampel air lindi sebelum pengolahan (A ₁ ')			
NO.	Parameter	Kadar maksimum	Satuan	Hasil	Selisih	Status	
1	рН	6-9	-	7,56	0	Memenuhi baku mutu	
2	BOD	150	mg/L	45,5	104,5	Memenuhi baku mutu	
3	COD	300	mg/L	95,68	204,32	Memenuhi baku mutu	
4	TSS	100	mg/L	18,02	81,98	Memenuhi baku mutu	
5	N Total	60	mg/L	230,7	-170,7	Tidak memenuhi baku mutu	
6	Merkuri/Air Raksa	0,005	mg/L	0,001	0,004	Memenuhi baku mutu	
7	Kadmium	0,1	mg/L	0,008	0,092	Memenuhi baku mutu	

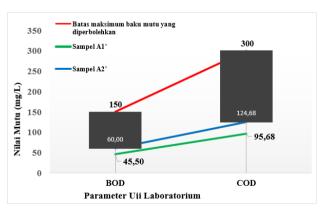
Tabel 6. Hasil uji laboratorium untuk sampel A_2 ' terhadap baku mutu maksimum yang diperbolehkan


No.	Baku mutu air lindi yang diperbolehkan (Menurut Permen LHK Tahun 2016)			Sampel air lindi sebelum pengolahan (A2')			
No.	Parmeter	Kadar maksimum	Satuan	Hasil	Selisih	Status	
1	рН	6-9	-	7,55	0	Memenuhi baku mutu	
2	BOD	150	mg/L	60	90	Memenuhi baku mutu	
3	COD	300	mg/L	124,68	175,32	Memenuhi baku mutu	
4	TSS	100	mg/L	24,02	75,98	Memenuhi baku mutu	
5	N Total	60	mg/L	293,35	-233,35	Tidak memenuhi baku mutu	
6	Merkuri/ Air Raksa	0,005	mg/L	0,001	0,004	Memenuhi baku mutu	
7	Kadmium	0,1	mg/L	0,008	0,092	Memenuhi baku mutu	

Air lindi hasil pengolahan menggunakan instalasi varian 2 skema kedua yang ditunjukan oleh Gambar 11, secara fisik terlihat lebih jernih bila dibandingkan dengan air lindi hasil pengolahan yang menggunakan prototipe alat varian 1 (sampel A₁ dan A₂) tetapi terlihat tidak lebih jernih dari air lindi yang dihasilkan oleh varian 2 skema pertama. Hasil uji laboratorium sampel A2' disajikan pada Tabel 6. Hasil uji laboratorium sampel A2' pada Tabel 6, terlihat bahwa untuk parameter BOD, COD, TSS sudah memenuhi baku mutu yang disyaratkan, namun nilainya tidak lebih baik dari sampel A₁' yang dihasilkan melalui proses pengolahan air lindi menggunakan prototipe instalasi varian 2 skema pertama.


H. Analisis Kualitas Air Lindi untuk Parameter BOD dan COD

Analisis kualitas air lindi untuk sampel uji DLHK, A₀, A₁, A₂, A₁' dan A₂' untuk parameter BOD dan COD dapat diketahui dari grafik sinusoidal seperti yang terlihat pada Gambar 12 dan Gambar 13.


Kualitas air lindi secara visual dan nilai untuk parameter BOD sampel DLHK, A₀, A₁, A₁' dan A₂' seperti yang tersaji pada Gambar 12 menyatakan bahwa sampel yang memenuhi baku mutu adalah A₁' dan A₂'. Nilai BOD kedua sampel tersebut dibawah batas maksimum yang diperbolehkan yakni untuk A₁' sebesar 45,50 mg/L dan A₂' sebesar 60 mg/L.

Gambar 12. Analisis parameter BOD hasil uji laboratorium sampel DLHK, A₀, A₁, A₂, A₁' dan A₂' terhadap BOD baku mutu yang diperbolehkan

Gambar 13. Analisis parameter COD hasil uji laboratorium sampel DLHK, A₀, A₁, A₁' dan A₂' terhadap COD baku mutu yang diperbolehkan

Gambar 14. Perbandingan hasil uji laboratorium untuk sampel A₁', A₂' dengan batas maksimum baku mutu yang diperbolehkan untuk parameter BOD dan COD

Kualitas air lindi dengan parameter COD untuk sampel DLHK, A₀, A₁, A₁' dan A₂' yang disajikan oleh Gambar 13 menunjukan bahwa sampel yang memenuhi baku mutu adalah A₁' dan A₂'. Nilai COD kedua sampel tersebut dibawah batas

maksimum yang diperbolehkan yakni untuk A₁' sebesar 95,68 mg/L dan A₂' sebesar 124,68 mg/L.

I. Prototipe Instalasi Pengolah Air Lindi yang Paling Tepat

Dari grafik selisih kualitas air lindi yang disajikan oleh Gambar 12 dan Gambar 13 terlihat jelas bahwa nilai BOD dan COD yang memenuhi baku mutu adalah sampel A₁' dan A₂'. Untuk pemilihan instalasi pengolahan air lindi yang paling tepat bisa diambil dari instalasi pengolah air lindi yang menghasilkan kualitas air lindi yang paling baik dimana nilai BOD dan COD mendekati 0 mg/L. Perbandingan kualitas air lindi untuk sampel A₁' dan A₂' yang tersaji pada Gambar 14 dengan merujuk kepada batas baku mutu maksimum yang diperbolehkan berdasarkan Peraturan Menteri LHK No. P.59 Tahun 2016. Dari gambar tersebut terlihat bahwa garis yang paling mendekati 0 mg/L adalah garis sampel A₁', artinya prototipe instalasi pengolah air lindi yang paling tepat adalah prototipe instalasi varian 2 skema pertama. Varian ini merupakan instalasi pengolah air lindi melalui reaktor biofilter dengan penambahan 3 unit filter canister tanpa kombinasi reaktor fotokatalis.

IV. KESIMPULAN

Hasil penelitian ini menunjukkan bahwa varian 1 pengolahan air lindi menggunakan skema pertama maupun kedua tidak bisa menghasilkan kualitas air lindi yang memenuhi mutu. varian baku Sebaliknya, instalasi pengolahan air lindi baik skema pertama maupun skema kedua dapat digunakan untuk mengolah air lindi. Varian ini menghasilkan kualitas air lebih baik dari varian 1 dimana semua parameter uji laboratorium kecuali N-total sudah memenuhi baku mutu yang diperbolehkan. Prototipe instalasi pengolah air lindi yang paling tepat adalah instalasi varian 2 skema kesatu. Varian 2 skema kesatu merupakan instalasi pengolah air lindi melalui reaktor biofilter dengan penambahan 3 unit filter canister tanpa kombinasi reaktor fotokatalis.

Penelitian terkait dengan pengelolaan air lindi khususnya di TPSA Cilowong ini masih bisa ditindaklanjuti dengan penelitian berikutnya yakni difokuskan pada pereduksian kadar Ntotal, dimana dalam penelitian ini masih belum memenuhi baku mutu yang disyaratkan menurut aturan.

UCAPAN TERIMA KASIH

Ucapan terima kasih disampaikan kepada Laboratorium PT. Sucofindo Cilegon yang telah bekerja sama dalam pengujian sampel-sampel air lindi.

REFERENSI

- [1] Undang-undang Republik Indonesia Nomor 18 Tahun 2008 tentang Pengelolaan Sampah, Jakarta, 2008
- [2] Peraturan Presiden Republik Indonesia Nomor 97 Tahun 2017, Jakarta, 2017.
- [3] Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor P.10/MENLHK/SETJEN/PLB.0/4/2018, Jakarta, 2018.
- [4] Kementerian Lingkungan Hidup dan Kehutanan, "Indeks Kualitas Lingkungan Hidup (IKLH) 2017," Sekretariat Jenderal Kementerian Lingkungan Hidup dan Kehutanan, Jakarta, 2018.
- [5] K. Kaur, S. Mor, and K. Ravindra, "Removal of Chemical Oxygen Demand from Landfill Leachate using Cow-dung Ash as a Low-cost Adsorbent," *Journal of Colloid and Interface Science*, vol. 469, pp. 338-343, 2016.
- [6] Suara Pembaruan, "Limbah Cair Sampah di TPSA Cilowong tidak Memenuhi Baku," http://sp.beritasatu.com, Jakarta, 2012.
- [7] M. Hadiwidodo and W. Oktiawan, "Pengolahan Air Lindi dengan Proses Kombinasi Biofilter Anaerob-Aerob dan Wetland," *Jurnal Presipitasi*, vol. 9, no. 2, pp. 84-95, 2012.

- [8] A. Sato, P. Utomo, and H. S. B. Abineri, "Pengolahan Limbah Tahu Secara Anaerobik-Aerobik Kontinyu," *Seminar Nasional Sains dan Teknologi Terapan III*, Surabaya, 2015.
- [9] Peraturan Menteri Lingkungan Hidup dan Kehutanan Tentang Baku Mutu Lindi Bagi Usaha dan/atau Kegiatan Tempat Pemrosesan Akhir Sampah, Kementerian Lingkungan Hidup dan Kehutanan, Jakarta, 2016.
- [10] A. F. Rusydi, D. Suherman, and S. Sumawijaya, "Pengolahan Air Limbah Tekstil Melalui Proses Koagulasi–Flokulasi Dengan Menggunakan Lempung Sebagai Penyumbang Partikel Tersuspensi (Studi Kasus: Banaran, Sukoharjo dan Lawean, Kerto Suro, Jawa Tengah)," *Arena Tekstil*, vol. 31, no. 2, 2017.
- [11] N. W. Yuningrat, "Degradasi Pencemar Organik dalam Lindi dengan Proses Oksidasi Lanjut," *Jurnal Sains & Teknologi Universitas Pendidikan Ganesha*, vol. 1 no. 2, 2012.
- [12] T. E. Agustina, A. Bustomi, and J. Manalaoon, "Pengaruh Konsentrasi TiO2 dan Konsentrasi Limbah pada Proses Pengolahan Limbah Pewarna Sintetik Procion Red dengan Metode UV/Fenton/TiO2," *Jurnal Teknik Kimia Universitas Sriwijaya*, vol. 22, no. 1, pp. 65-72, 2016.