# Rancang Bangun *Bed Storage* untuk *Thermal Energy Storage* Berbasis Parafin dan Serbuk Besi

# Agri Suwandi<sup>1#</sup>, Zulfikar Sjarief<sup>2</sup>, Dwi Rahmalina<sup>2</sup>, Reza Abdu Rahman<sup>1</sup> Program Studi Teknik Mesin, Fakultas Teknik, Universitas Pancasila, Indonesia

<sup>1</sup>Program Studi Teknik Mesin, Fakultas Teknik, Universitas Pancasila, Indonesia <sup>2</sup>Program Studi Magister Teknik Mesin, Universitas Pancasila, Indonesia <sup>#</sup>agrisuwandi@univpancasila.ac.id

#### **Abstrak**

Thermal Energy Storage (TES) dimanfaatkan sebagai media penyimpanan panas untuk sistem concentrated solar power, solar heater, dan thermal management system pada kendaraan ringan. Tantangan dari aplikasi TES adalah desain dari bed storage yang digunakan harus memenuhi fungsi dasar yakni proses perpindahan panas saat charging dan discharging serta mampu menyimpan panas dengan kerugian panas yang sedikit. Pada penelitian ini, bed storage untuk TES didesain guna memenuhi fungsi sebagai media penyimpanan panas untuk aplikasi suhu rendah yakni 50-100°C. Material penyimpanan yang digunakan adalah campuran parafin dan serbuk besi dengan rasio massa 90:10. Penentuan fungsi menggunakan metode desain Pahl dan Beitz memberikan opsi penggunaan coil tube dengan material tembaga sebagai media perpindahan panas dan bed storage dengan bahan polimer termoplastik polyacetal. Hasil pengujian prototipe bed storage proses charging menunjukkan efisiensi perpindahan panas hingga 26,85% dengan koefisien perpindahan panas menyeluruh 21,422 W/m².°C. Proses discharging menunjukkan performa yang efektif dengan karakteristik perpindahan panas optimal berdasarkan koefisien perpindahan panas yang tinggi. Pada penggunaan bahan polyacetal dan nilai konduktivitas termal rendah yakni 0,231 W/m.K menyebabkan laju kerugian panas yang sangat lambat hanya 2,924 W. Prototipe yang dibuat mampu memaksimalkan proses perpindahan panas di sisi material bed storage untuk fungsi charging dan discharging dan mampu menekan laju kerugian panas pada fungsi storing.

Kata kunci: Thermal Energy Storage (TES), bed storage, desain Pahl dan Beitz, polyacetal, coil tube

# Abstract

Thermal Energy Storage (TES) is used as a heat storage medium for concentrated solar power systems, solar heaters and thermal management systems in light vehicles. The challenge with the TES application is that the design of the bed storage used must fulfill the basic function, namely the heat transfer process when charging and discharging and being able to store heat with minimal heat loss. In this research, bed storage for TES is designed to fulfill its function as a heat storage medium for low temperature applications, namely 50–100°C. The storage material used is a mixture of paraffin and iron powder with a mass ratio of 90:10. Determination of function using the Pahl and Beitz design method, provides the option of using a coil tube with copper material as a heat transfer medium and bed storage with a polyacetal thermoplastic polymer material. The test results of the prototype bed storage charging process show a heat transfer efficiency of up to 26.85% with an overall heat transfer coefficient of 21.422 W/m².°C. The discharging process shows effective performance, optimal heat transfer characteristics based on the high heat transfer coefficient. The use of polyacetal material and the low thermal conductivity value of 0.231 W/mK causes a very slow heat loss rate of only 2.924 W. The prototype made is able to maximize the heat transfer process on the side of the bed storage material for charging and discharging functions and is able to reduce the rate of heat loss in storing function.

Keywords: Thermal Energy Storage (TES), bed storage, Pahl and Beitz designs, polyacetal, coil tube

# I. PENDAHULUAN

Sistem penyimpanan energi memberikan opsi yang luas untuk dikembangkan sebagai inovasi dan pengembangan teknologi pada aplikasi energi baru terbarukan. Sistem penyimpanan energi termal dapat dikembangkan pada banyak aplikasi seperti solar heater, concentrated solar power, dan thermal management system pada kendaraan ringan [1]. Terdapat tiga kategori material penyimpanan panas

berdasarkan karakteristik material tersebut yakni sensible, latent, dan thermochemical heat [2]. Sistem kombinasi antara sensible dan latent heat (hybrid storage) terbukti memiliki peluang pengembangan terbaik untuk aplikasi suhu rendah (50-120°C) [3]. Tantangan terbesar untuk sistem penyimpanan panas hybrid storage adalah desain bed storage yang digunakan [4]. Parameter utama pengembangan desain bed storage dapat dilihat dari berbagai hal berikut [5]:

- 1. Cakupan temperatur kerja yang direncanakan;
- Jenis material penyimpanan panas yang digunakan;
- 3. Karakteristik dan sifat material penyimpanan panas;
- 4. Banyaknya rencana *cycle* penggunaan material penyimpanan panas;
- 5. Karakteristik *charging* dan *discharging rate* yang direncanakan;
- 6. Rencana instrumentasi dan desain perakitan;
- 7. Efektifitas biaya terhadap penggunaan.

Aplikasi dari *bed storage* untuk temperatur rendah (50-100°C) untuk pemanas pelumas kendaraan bertenaga bensin memungkinkan limbah panas mesin disimpan pada suatu wadah (*thermal storage*) lalu digunakan kembali untuk memanaskan oli saat *idle warming up*. Tantangannya adalah optimasi bentuk *bed storage* dengan karakteristik perpindahan panas yang baik dan juga minim kerugian panas.

Optimasi desain bed storage penting untuk dilakukan karena dapat memaksimalkan fungsi penyimpanan energi panas. Dong, dkk. menyatakan manajemen termal unit penyimpanan panas merupakan masalah penting yang harus dipecahkan untuk meminimalisir kerugian panas dan memaksimalkan proses penyerapan panas di material storage baik untuk proses charging maupun discharging. He, dkk. [7] fokus terhadap perbaikan desain bed storage untuk bentuk encapsulated paraffin dan mendukung pernyataan bahwa interaksi perpindahan panas merupakan aspek penting pada bed storage. Dari aspek material, Chandra [8] membahas tentang peningkatan kapasitas penyimpanan panas melalui penggunaan parafin dengan menambahkan pasir. Kombinasi material penyimpanan membuat bentuk bed storage yang direncanakan harus disesuaikan dengan karakteristik material penyimpanan tersebut. Kabeel, dkk. [9] memberikan contoh penyesuaian antara material penyimpanan kombinasi dengan desain bed storage untuk memaksimalkan proses pertukaran panas saat charging dan discharging. Mostafavi, dkk. [10] membuat gambaran dasar tentang pengaruh yang signifikan dari desain bed storage dan jenis material yang digunakan sehingga

fungsi penyimpanan dapat dibuat lebih baik dengan minim kerugian dan mampu meningkatkan rerata perpindahan panas untuk *charging* dan *discharging*.

Banyak variabel desain dari bed storage untuk unit penyimpanan panas menyebabkan belum ada acuan baku untuk bed storage. Proses rancang bangun bed storage pada penelitian ini mengacu kepada parameter desain bed storage dan juga jenis material penyimpanan yang digunakan. Poin penting lainnya yaitu material storage yang dipakai adalah parafin dan serbuk besi, tergolong sebagai material baru untuk material penyimpanan termal.

Masalah utama proses rancang bangun dari unit penyimpanan panas untuk *Thermal Energy Storage* (TES) berbasis parafin dan serbuk besi adalah solusi desain alternatif material *bed storage* untuk rencana aplikasi pada temperatur rendah yakni 50-100°C dan karakteristik perpindahan panas prototipe *bed storage* saat proses *charging*, *storing*, dan *discharging*. Pemilihan sistem penyimpanan panas yang optimal dari *Phase Change Material* (PCM) dan geometri *bed storage* memainkan peran penting. Jenis PCM untuk unit penyimpanan panas tertentu didasarkan pada titik lelehnya sementara geometri sistem penyimpanan panas menggerakkan perpindahan panas [11].

Tujuan penelitian ini untuk menghasilkan desain dan prototipe bed storage yang dapat digunakan sebagai unit penyimpanan panas menggunakan material storage campuran parafin dan serbuk besi. Tujuan lainnya untuk mengoptimalkan performa dari unit penyimpanan panas menggunakan material storage campuran parafin dan serbuk besi pada sistem energi panas guna rencana aplikasi pada temperatur rendah. Hasil penelitian ini adalah unit penyimpanan panas yang dapat digunakan pada sistem aplikasi panas temperatur rendah dengan menggunakan parafin dan serbuk besi sebagai upaya penting untuk penghematan energi dan peningkatkan efektifitas dari sistem tersebut. Selain itu, hasil penelitian dapat dijadikan sebagai benchmark untuk rancang bangun bed storage TES pada temperatur rendah.

# II. METODE PENELITIAN

#### A. Metode Perancangan Desain

Jenis hybrid storage material umumnya digunakan untuk kombinasi dari sensible dan latent heat material. Performa dari hybrid storage material mampu meningkatkan titik penguapan dan leleh parafin untuk aplikasi pada cakupan 50-130°C [3]. Pada sistem TES, bed storage dapat didefinisikan sebagai tempat terjadinya pertukaran dan penyimpanan panas dari material penyimpanan panas. Kalor yang diterima kemudian disimpan dan

digunakan oleh sistem di luar unit bed storage [12]. Alat Penukar Kalor (APK) tipe regenerator cocok untuk diterapkan pada aplikasi sistem penyimpanan panas karena fungsi dasar dari regenerator adalah sistem penyimpanan panas yang "diam" [13]. Persamaan matematis APK tipe regenerator rentang suhu operasi  $(T_{span})$  seperti persamaan 1 [14], berikut:

$$\Delta T_{span} = T_h - T_c \tag{1}$$

dimana  $T_h$  adalah suhu masuk fluida,  $T_c$  adalah suhu keluar fluida.

Metode desain Pahl dan Beitz seperti pada Tabel 1 cocok untuk digunakan dalam pengembangan sistem teknis yang belum memiliki desain sempurna namun sudah ada beberapa referensi awal terkait desain tersebut [15], [16]. Tahapan yang dilakukan pada penelitian ini dapat dilihat pada Gambar 1.

Wadah yang digunakan untuk menangani material pengubah fase dioperasikan dalam kondisi berbeda dan mengalami suhu variabel yang menyebabkan cepatnya korosi pada material wadah jika tidak dipilih dengan benar [11]. Perencanaan komponen untuk temperatur didasarkan atas kekuatan lelah sedangkan pada temperatur lebih tinggi perlu didasarkan atas kekuatan melar. karena pengaruh waktu pembebanan adalah besar [18] seperti ditunjukkan pada Tabel 2, Tabel 3, dan Tabel 4.

Kualitas desain diukur seberapa baik desain mencapai semua persyaratan produk. Kualitas desain dapat diukur dengan seberapa baik kinerja produk dibandingkan dengan persyaratan produknya. Sasaran dari setiap program pengujian dan evaluasi harus untuk mengidentifikasi area untuk perbaikan desain, yang meningkatkan produktivitas dan keandalan dan mengurangi risiko teknis [19]. Untuk menguji penyimpanan panas, perlengkapan uji dirancang dan dibangun serta diwujudkan sesuai dengan spesifikasi dari standar EN 12977-3. Hal ini memungkinkan untuk melakukan semua tes yang ditentukan untuk karakterisasi penuh dari bed storage [20].

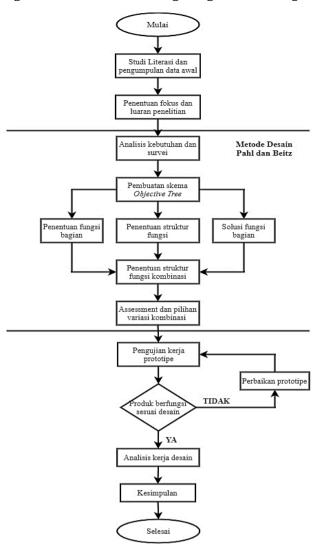
Survei dilakukan untuk mengetahui kebutuhan dari pengguna atau dalam hal ini masyarakat untuk memperkenalkan sekaligus mengadopsi konsep kerja dari *bed storage* (Gambar 2). Hasil atau proses kuesioner survei Google Formulir adalah daftar persyaratan. Dengan demikian, dokumen ini mewakili spesifikasi yang dapat digunakan untuk menilai keberhasilan proyek desain [17].

Tabel 1. Model proses desain Pahl dan Beitz [17]

| No. | Tahapan dalam proses<br>desain | Metode yang<br>tepat |
|-----|--------------------------------|----------------------|
| 1.  | Memperjelas tujuan             | Pohon tujuan         |
| 2.  | Menetapkan fungsi              | Analisis fungsi      |
| 3.  | Menetapkan persyaratan         | Spesifikasi          |
|     |                                | penampilan           |
| 4.  | Menentukan                     | Penerapan fungsi     |
|     | karakteristik                  | kualitas             |
| 5.  | Menghasilkan alternatif        | Bagan morfologi      |
| 6.  | Mengevaluasi alternatif        | Tujuan berbobot      |
| 7.  | Memperbaiki detail             | Rekayasa nilai       |

Tabel 2. Kekuatan kelelahan plastik [18]

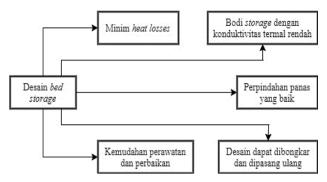
| Polimer Kelelahan Termoplastik kg/mm² x 10 <sup>7</sup> |      | <u>Kelelahan</u><br>Perpanjangan<br>α | <u>Kelelahan</u> Lentur<br>β |  |  |
|---------------------------------------------------------|------|---------------------------------------|------------------------------|--|--|
| Nilon                                                   | 1,20 | 0,22                                  | 0,24                         |  |  |
| Polyacetal                                              | 2,74 | 0,37                                  | 0,25                         |  |  |
| PTFE (Teflon)                                           | 1,12 | 0,50                                  | 0,40                         |  |  |


Tabel 3. Kekuatan tarik, tekan dan lentur bahan polimer [18]

| Polimer<br>Termoplastik | Kekuatan tarik<br>kgf/mm² | Perpanjangan (%) | Modulus elastik<br>kgf/mm <sup>2</sup> x 10 <sup>3</sup> | Kekuatan tekan<br>kgf/mm² | Kekuatan lentur<br>kgf/mm <sup>2</sup> |
|-------------------------|---------------------------|------------------|----------------------------------------------------------|---------------------------|----------------------------------------|
| Nilon                   | 7,1-8,4                   | 25-320           | 1,0-2,6                                                  | 4,6-8,5                   | 5,6-11,2                               |
| Polyacetal              | 6,1-7                     | 15-40            | 2,4-2,8                                                  | 12,6                      | 8,4-9,8                                |
| PTFE (Teflon)           | 1,4-3,1                   | 200-400          | 0,4                                                      | 1,19                      | -                                      |

Tabel 4. Karakteristik termal bahan plastik [18]

| Polimer Termoplastik | Temperatur distorsi panas (°C) |
|----------------------|--------------------------------|
| Nilon                | (-50) ~185                     |
| Polyacetal           | (-50) ~ 170                    |
| PTFE (Teflon)        | (-260) ~ 179                   |


Agri Suwandi, dkk: Rancang Bangun Bed Storage untuk ...



Gambar 1. Diagram alir penelitian



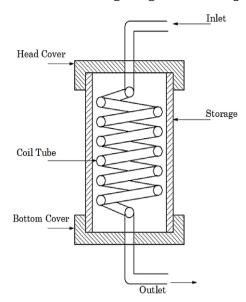
Gambar 2. Tampilan kuesioner survei



Gambar 3. Objective tree desain bed storage

Tabel 5. Daftar kebutuhan (D) dan harapan (W)

| Indikator | Parameter                           |
|-----------|-------------------------------------|
|           | Desain                              |
| W         | Bentuk: silinder                    |
| W         | Rakitan: mampu bongkar-pasang       |
| W         | Tekanan maksimal: 1 – 2 Bar         |
| D         | Panjang: 120 mm                     |
| D         | Lebar: 70 mm                        |
| D         | Diameter: 60 mm                     |
|           | Gerak                               |
| D         | Arah aliran: horizontal             |
| D         | Siklus: tertutup                    |
| D         | Laju aliran: tunak                  |
|           | Energi                              |
| D         | Masuk dan keluar: termal            |
| D         | Simpanan energi: termal             |
| W         | Efisiensi perpindahan: 20% - 30%    |
| D         | Kerugian termal: minim              |
| D         | Kerugian mekanik: minim             |
|           | Material                            |
| D         | Wadah: Tahan panas sampai 170 °C    |
| D         | Wadah: konduktivitas termal rendah  |
| D         | Tubing: konduktivitas termal tinggi |
|           | Standar Kualitas                    |
| D         | Acuan material: ASTM                |
| D         | Acuan pengukuran: NIST              |


Objective tree merupakan pola hubungan yang menerangkan kebutuhan pelanggan dan kajian pustaka yang dilakukan (Gambar 3). Kebutuhan ini yang menjadi rujukan dalam mengembangkan spesifikasi detail dari desain bed storage.

Mengacu kepada banyak referensi dan mempertimbangkan daftar kebutuhan dan harapan pada Tabel 5, maka desain yang dikembangkan dari unit *bed storage* harus mampu memenuhi fungsi keseluruhan tersebut. Rencana desain dari *bed storage* ada pada Gambar 4.

Gambar 5 menunjukkan fungsi bagian *inlet* berperan sebagai saluran masuk untuk fluida kerja yang digunakan, material *piping* dan *tubing system* dijadikan sebagai material yang cocok untuk digunakan pada bagian ini. *Head cover* berfungsi sebagai penutup atas bagian *storage* dan untuk tempat kedudukan *inlet tube*. Fungsi *bottom cover* 

adalah sebagai penutup bawah bagian storage dan untuk tempat kedudukan outlet tube. Bodi storage merupakan fungsi terpenting dari unit bed storage, sebagai tempat penyimpanan material kerja yang digunakan untuk menyimpan panas yang ditransfer dari luar, juga harus mampu meminimalisir kerugian panas akibat adanya perbedaan suhu dengan lingkungan sekitar. Coil tube yang berperan sebagai media tempat fluida kerja bersirkulasi, memindahkan panas dari dan ke fluida kerja untuk material penyimpanan. Karakteristik terpenting dari bagian ini adalah mampu berperan sebagai konduktor panas yang baik.

Metode penentuan dibuat ke dalam sebuah tabel matriks yang membantu untuk menentukan pilihan—pilihan kombinasi berdasarkan kemungkinan yang ada pada tiap bagian. Fungsi pemilihan matriks dapat menghasilkan lebih dari 1 kombinasi fungsi untuk penilaian berikutnya (Tabel 6).



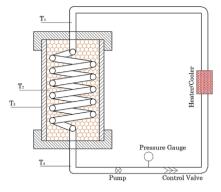
Gambar 4. Rencana desain bed storage



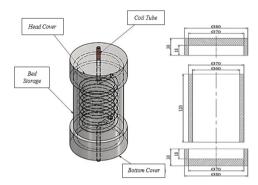
Gambar 5. Fungsi keseluruhan bagian

Tabel 6. Alternatif desain bed storage

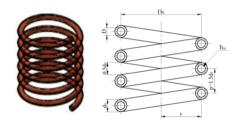
| Kode | Aliran   | Bagian          | Kriteria                                                                                                                                          | Indikator                                                                                                | 1      | 2       | 3      | 4      | 5      |
|------|----------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------|---------|--------|--------|--------|
| a    | Sinyal   | Inlet<br>tube   | Memungkinkan untuk<br>penyambungan     Koefisien gesekan dalam<br>rendah     Minim turbulence                                                     | Saluran masuk fluida<br>kerja tanpa membuat<br>perubahan aliran<br>menjadi turbulane                     | SS 316 | AL 6061 | PTFE   | POM    | Nylon  |
| b    | Sinyal   | Outlet<br>tube  | Memungkinkan untuk<br>penyambungan     Koefisien gesekan dalam<br>rendah     Mampu menahan tekanan<br>lokal                                       | Saluran masuk fluida<br>kerja tanpa membuat<br>tekanan dan suhu<br>turun                                 | SS 316 | AL 6061 | PTFE   | POM    | Nylon  |
| с    | Sinyal   | Coil<br>tube    | Koefisien gesekan dalam<br>rendah     Memiliki daya hantar<br>panas optimal     Tahan suhu tinggi                                                 | Memaksimalkan<br>proses perpindahan<br>panas dari dan ke<br>material kerja                               | C10200 | C10300  | C10800 | C12000 | C12200 |
| d    | Material | Head<br>cover   | <ul><li>Mudah dibentuk</li><li>Tidak berdeformasi<br/>terhadap waktu</li></ul>                                                                    | Penutup storage<br>pada bagian atas,<br>mampu buka pasang                                                | SS 316 | AL 6061 | PTFE   | POM    | Nylon  |
| e    | Material | Bottom<br>cover | Mudah dibentuk     Tahan terhadap tekanan<br>lokal                                                                                                | Penutupbawah<br>permanen, dapat<br>menahanbeban material<br>kerja                                        | SS 316 | AL 6061 | PTFE   | POM    | Nylon  |
| f    | Material | Storage         | <ul> <li>Stabilitas kimia baik</li> <li>Tahan korosi</li> <li>Konduktivitas termal rendah</li> <li>Mampu kerja pada hingga suhu 170 °C</li> </ul> | Tempat<br>penyimpanan<br>material kerja<br>dengan karakteristik<br>minim heat losses<br>dan tidak korosi | SS 316 | AL 6061 | PTFE   | POM    | Nylon  |


Agri Suwandi, dkk: Rancang Bangun Bed Storage untuk ...

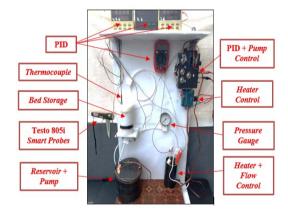
Tabel 7. Kombinasi bagian komponen bed storage


| MAGISTER TEKNIK<br>MESIN UNIVERSITAS<br>PANCASILA |      |                                                             |          |          |          | Pemilihan variasi bagian pada<br>bed storage |                             |        |  |  |  |
|---------------------------------------------------|------|-------------------------------------------------------------|----------|----------|----------|----------------------------------------------|-----------------------------|--------|--|--|--|
|                                                   | Crit | eria:                                                       |          |          |          | Ker                                          | outusan:                    |        |  |  |  |
| VARIASI DESAIN BAGIAN                             | + Se | esuai                                                       |          |          |          |                                              | Bagian sesuai               |        |  |  |  |
| 31/                                               |      | dak S                                                       | esnai    |          |          |                                              | Bagian dieliminasi          |        |  |  |  |
| Ψ                                                 |      | ormaci                                                      |          |          |          |                                              |                             |        |  |  |  |
| B                                                 |      | ? Kurang informasi (?) Lakukan pencarian informasi          |          |          |          |                                              |                             |        |  |  |  |
|                                                   |      | ! Periksa lebih lanjut (!) Lengkapi kekurangan  Utilization |          |          |          |                                              |                             |        |  |  |  |
| $\mathbf{S}_{A}$                                  | Util |                                                             |          |          |          |                                              | <u> </u>                    |        |  |  |  |
| DE                                                |      | Der                                                         | nande    |          |          |                                              |                             |        |  |  |  |
| []                                                |      |                                                             | Cos      |          |          |                                              |                             |        |  |  |  |
| Ψ                                                 |      |                                                             |          | Pro      | per in   | iform                                        | ation                       |        |  |  |  |
| $\mathbb{Z}$                                      |      |                                                             |          |          |          | irabl                                        |                             |        |  |  |  |
| ΛV                                                |      |                                                             |          |          |          | Safe                                         | etv                         |        |  |  |  |
|                                                   | Α    | В                                                           | С        | D        | Е        | F                                            | DESKRIPSI                   | Nilai  |  |  |  |
|                                                   | +    | -                                                           | +        | +        | -        | +                                            | DESIGNI SI                  | 111141 |  |  |  |
| a <sub>1</sub>                                    |      |                                                             |          |          | +        |                                              |                             | -      |  |  |  |
| $\mathbf{a}_2$                                    | +    | +                                                           | -        | +        |          | +                                            |                             | +      |  |  |  |
| $a_3$                                             | +    | +                                                           | +        | +        | +        | +                                            | Aman dan sesuai             | +      |  |  |  |
| $a_4$                                             | -    | -                                                           | -        | +        | +        | +                                            |                             | -      |  |  |  |
| $a_5$                                             | +    | +                                                           | +        | +        | 1        | +                                            |                             | +      |  |  |  |
|                                                   |      |                                                             |          |          |          |                                              |                             |        |  |  |  |
| b <sub>1</sub>                                    | +    | -                                                           | +        | +        | -        | +                                            |                             | -      |  |  |  |
| b <sub>2</sub>                                    | +    | +                                                           |          | +        | +        | +                                            |                             | +      |  |  |  |
| b <sub>3</sub>                                    | +    | +                                                           | +        | +        | +        | +                                            | Aman dan sesuai             | +      |  |  |  |
|                                                   |      | _                                                           |          | +        | +        | +                                            | Alliali dali sesuai         | 1      |  |  |  |
| b <sub>4</sub>                                    | -    |                                                             | -        |          |          |                                              |                             | -      |  |  |  |
| $b_5$                                             | +    | +                                                           | +        | +        | -        | +                                            |                             | +      |  |  |  |
|                                                   |      |                                                             |          |          |          |                                              |                             |        |  |  |  |
| $c_1$                                             | +    | -                                                           | +        | +        | -        | +                                            |                             | -      |  |  |  |
| $\mathbf{c}_2$                                    | +    | +                                                           | -        | +        | +        | +                                            |                             | +      |  |  |  |
| c <sub>3</sub>                                    | +    | +                                                           | +        | +        | +        | +                                            | Ukuran dapat<br>disesuaikan | +      |  |  |  |
| $c_4$                                             | -    | -                                                           | -        | +        | +        | +                                            |                             | -      |  |  |  |
| $c_5$                                             | +    | +                                                           | +        | +        | -        | +                                            |                             | +      |  |  |  |
|                                                   |      |                                                             |          |          |          |                                              |                             |        |  |  |  |
| $d_1$                                             | _    | +                                                           | _        | +        | +        | +                                            |                             | -      |  |  |  |
| $\frac{\mathbf{d}_1}{\mathbf{d}_2}$               | _    | +                                                           | -        | +        | +        | +                                            |                             | -      |  |  |  |
| d <sub>2</sub>                                    | +    | +                                                           | +        | +        | +        | -                                            |                             | +      |  |  |  |
| $d_4$                                             | +    | +                                                           | +        | +        | +        | <del>-</del>                                 |                             | +      |  |  |  |
|                                                   | +    | +                                                           | +        | +        | +        | +                                            | Mudoh dihamtula             | +      |  |  |  |
| $d_5$                                             |      | +                                                           |          |          |          | +                                            | Mudah dibentuk              | +      |  |  |  |
| <u> </u>                                          |      |                                                             | <u> </u> | <u> </u> |          | <u> </u>                                     |                             |        |  |  |  |
| $e_1$                                             | -    | +                                                           | -        | +        | +        | +                                            |                             | -      |  |  |  |
| $e_2$                                             | -    | +                                                           | -        | +        | +        | +                                            |                             | -      |  |  |  |
| $e_3$                                             | +    | +                                                           | +        | +        | +        | L-                                           |                             | +      |  |  |  |
| $e_4$                                             | +    | +                                                           | +        | +        | +        | -                                            |                             | +      |  |  |  |
| e <sub>5</sub>                                    | +    | +                                                           | +        | +        | +        | +                                            | Stabilitas kimia<br>baik    | +      |  |  |  |
| L                                                 |      |                                                             |          | <u> </u> | <u> </u> |                                              |                             |        |  |  |  |
| $f_1$                                             | -    | +                                                           | -        | +        | +        | +                                            |                             | -      |  |  |  |
| $f_2$                                             | -    | +                                                           | -        | +        | +        | +                                            |                             | -      |  |  |  |
| f <sub>3</sub>                                    | +    | +                                                           | +        | +        | +        | -                                            |                             | +      |  |  |  |
| f <sub>4</sub>                                    | +    | +                                                           | +        | +        | +        | -                                            |                             | +      |  |  |  |
| f <sub>5</sub>                                    | +    | +                                                           | +        | +        | +        | +                                            | Kekuatan mekanis            | +      |  |  |  |
| 15                                                | +    | +                                                           | +        | +        | +        | +                                            | terpenuhi                   | +      |  |  |  |

Proses pemilihan dilakukan melalui analisis butir fungsi dan kesesuaian terhadap kondisi pendukung lainnya, dengan pemberian indikator positif (+) untuk bagian yang memiliki kesesuaian terhadap variabel desain dan tanda negatif (-) untuk sebaliknya (Tabel 7).


Pilihan tersebut selanjutnya dihubungkan menggunakan garis hubung sebagai kaitan untuk kesesuaian terhadap kombinasi yang mungkin dilakukan pada tiap pilihan. Tabel 8 merupakan tabel pemilihan bagian komponen *bed storage* berdasarkan indikator kesesuaian yang diturunkan dari Tabel 7.




Gambar 6. Titik pengukuran uji prototipe



Gambar 7. Desain dan ukuran bed storage



Gambar 8. Desain dan ukuran coil tube



Gambar 9. Perlengkapan uji prototipe bed storage

Terdapat lima (5) pilihan alternatif material *bed* storage berdasarkan Tabel 8 yang dijadikan sebagai referensi dalam pemilihan komponen untuk tiap bagian yang dibuat. Tiap alternatif yang dipilih harus ditentukan nilai berdasarkan kriteria penting yang dijadikan sebagai aspek pertimbangan dalam pemilihan. Kriteria tersebut harus disesuaikan dengan parameter desain untuk mencapai hasil yang

maksimal berdasarkan pemilihan tiap bagian pada variasi Tabel 9.

Asessment kriteria pilihan untuk tiap variasi pada Tabel 9 menghasilkan nilai Overall Weighted Value (OWV) untuk tiap-tiap variasi. Nilai OWV merupakan nilai acuan dalam pemilihan variasi yang dilakukan untuk tiap bagian. Berdasarkan hasil penilaian tersebut, nilai OWV tertinggi ada pada kombinasi pilihan 3, karena polimer termoplastik Polyacetal sesuai dengan rencana komponen untuk temperatur rendah, unggul ditinjau dari ketahanan lelah (Tabel 2), ketahanan melar dan ketahanan abrasi (Tabel 3). Bahan ini juga lebih ringan daripada logam, unggul dalam ketahanan air, diri dan menguntungkan pelumasan dalam kemampuan produksi.

# B. Pengujian Prototipe Bed Storage

Desain model pengujian dirancang seperti pada Gambar 6 dengan desain ukuran *bed storage* ditampilkan pada Gambar 7, serta desain dan ukuran *coil tube* pada Gambar 8. Adapun realisasi perlengkapan uji *bed storage* ditunjukkan pada Gambar 9. Metode uji kinerja untuk penyimpanan pemanas dirancang sesuai spesifikasi standar EN 12977-3 [21], [22].

Spesifikasi alat pengujian dan komponen yang digunakan terangkum pada Tabel 10. Pengujian prototipe *bed storage* yang dilakukan melalui metode eksperimen yakni:

- 1. Pengujian *charging*, yang menandakan panas masuk ke *bed storage*.
- 2. Pengujian *storing statis* dan dinamis, pengujian pelepasan panas dari *bed storage* tanpa diberi beban pendingin (statis) dan dengan diberi beban pendinginan air (dinamis).
- 3. Pengujian *discharging*, yang menandakan panas dilepaskan dari *bed storage*.

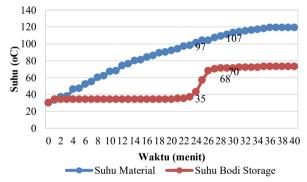
#### III. HASIL DAN PEMBAHASAN

Hasil pengujian *charging* dengan indikator suhu material *storage* dan suhu bodi *storage* ditunjukkan pada Gambar 10. Grafik kenaikan suhu pada material kerja dan pada bodi *storage* tidak bersifat linier. Kenaikan suhu pada bodi *storage* jauh lebih lambat dibandingkan dengan kenaikan suhu pada material. Hal ini karena dipengaruhi oleh konduktivitas termal dari bodi *storage* dan juga material *storage*.

Aliran Indikator Kode **Bagian** Kriteria Memungkinkan untuk Saluran masuk fluida penyambungan kerja tanpa membuat Inlet Sinyal Koefisien gesekan dalam perubahan aliran tuhe rendah menjadi turbulane • Minim turbulence SS 316 Memungkinkan untuk penyambungan Saluran masuk fluida Koefisien gesekan dalam Outlet kerja tanpa membuat b Sinyal tuhe rendah tekanan dan suhu AL 6061 POM Mampu menahan turun SS 316 PTIFE Nylon tekanan lokal • Koefisien gesekan dalam Memaksimalkan rendah Coil proses perpindahan c Sinyal Memiliki daya hantar panas dari dan ke tube panas optimal material kerja C10300 C12200 C10800 C12000 Tahan suhu tinggi C10200 Mudah dibentuk Penutup storage Head d Material pada bagian atas, Tidak berdeformasi cover PTFE Nylon РОМ AL 6061 terhadap waktu mampu buka pasang SS:316 Penutup bawah ī Mudah dibentuk Bottom permanen, dapat Tahan terhadap tekanan Material menahan beban cover AL 6061 PTFE Nylon SS.316 lokal material kerja Stabilitas kimia baik Tempat Tahan korosi penyimpanan Konduktivitas termal material kerja f Material Storage dengan karakteristik rendah minim heat losses Mampu kerja pada dan tidak korosi hingga suhu 170 °C PTFE

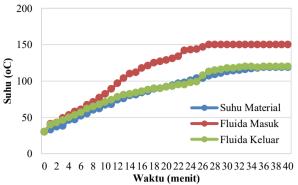
Tabel 8. Solusi desain alternatif material bed storage

Keterangan Kombinasi:

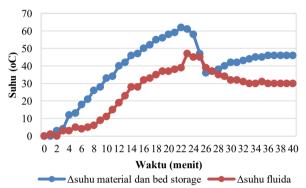

 Kombinasi Desain 4 ( — — — — ) :  $a_4-b_4-c_4-d_2-e_2-f_2$  Kombinasi Desain 5 ( — — — — ) :  $a_5-b_5-c_5-d_4-e_4-f_4$ 

Tabel 9. Asessment kriteria pilihan

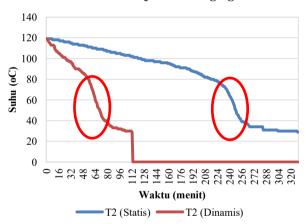
| No  | Kriteria                                                   | Wi   | Parameter                               | Var     | ian 1        | Var     | rian 2       | Var     | ian 3   | Vari         | an 4    | Vari         | an 5    |
|-----|------------------------------------------------------------|------|-----------------------------------------|---------|--------------|---------|--------------|---------|---------|--------------|---------|--------------|---------|
| 110 | Kriteria                                                   | w i  | rarameter                               | $V_{i}$ | $W_{i}V_{i}$ | $V_{i}$ | $W_{i}V_{i}$ | $V_{i}$ | $V_{i}$ | $W_{i}V_{i}$ | $V_{i}$ | $W_{i}V_{i}$ | $V_{i}$ |
| 1   | Aksesibilitas pengujian tes                                | 0,1  | Mudah diuji                             | 7       | 0,7          | 7       | 0,7          | 8       | 0,8     | 7            | 0,7     | 8            | 0,8     |
| 2   | Fungsi<br>perpindahan<br>panas                             | 0,15 | Laju<br>perpindahan<br>panas baik       | 7       | 1,05         | 6       | 0,9          | 7       | 1,05    | 7            | 1,05    | 7            | 1,05    |
| 3   | Proses assembly<br>tidak<br>memerlukan<br>banyak peralatan | 0,06 | Durasi<br>proses<br>perakitan           | 6       | 0,36         | 6       | 0.36         | 8       | 0,48    | 6            | 0,36    | 7            | 0,42    |
| 4   | Banyaknya<br>komponen                                      | 0,1  | Total<br>komponen                       | 6       | 0,6          | 6       | 0.6          | 7       | 0,7     | 6            | 0,6     | 7            | 0,7     |
| 5   | Ketersediaan<br>komponen                                   | 0,08 | Komponen<br>umum di<br>pasaran          | 6       | 0,48         | 8       | 0.64         | 8       | 0,64    | 7            | 0,56    | 8            | 0,64    |
| 6   | Minimalisir turbulence pada fluida                         | 0,08 | Koefisien<br>gesekan<br>dalam<br>rendah | 7       | 0,64         | 6       | 0.48         | 8       | 0,64    | 7            | 0,56    | 7            | 0,56    |
| 7   | Fungsi menahan<br>panas                                    | 0,14 | Fungsi<br>isolator<br>yang baik         | 7       | 0,98         | 6       | 0,84         | 7       | 0,98    | 8            | 1,12    | 7            | 0,98    |
| 8   | Kekuatan<br>mekanis material                               | 0,1  | Tahan<br>tekanan dari<br>dalam          | 7       | 0,7          | 7       | 0.7          | 8       | 0,8     | 7            | 0,7     | 7            | 0,7     |
| 9   | Kekuatan<br>sambungan<br>tubing                            | 0,09 | Sambungan<br>permanen                   | 7       | 0,63         | 6       | 0.54         | 7       | 0,63    | 6            | 0,54    | 7            | 0,63    |
| 10  | Bentuk dan ergonomis                                       | 0,1  | Kompak                                  | 7       | 0,7          | 6       | 0.6          | 8       | 0,8     | 7            | 0,7     | 8            | 0,8     |
|     |                                                            |      | T                                       | OTAL    | 6,84         |         | 6,36         |         | 7,52    |              | 6.89    |              | 7,28    |


Tabel 10. Detail perlengkapan uji

| Komponen     | Spesifikasi                                  |
|--------------|----------------------------------------------|
| Mini Oil     | Turbine Impeller                             |
| Pump         | Material: Aluminum alloy                     |
|              | Penggerak: DC 12 V 1,5 Amp                   |
|              | Flow: 12 L/menit                             |
|              | Tekanan maksimal 3 bar                       |
| Thermocouple | Туре: Туре–К                                 |
|              | <i>Range</i> ukur: -50 °C – 650 °C           |
|              | Akurasi: <u>+</u> 1 °C                       |
| PID          | PXR4 – Fuji                                  |
| Heater       | Water bath heater                            |
|              | Heating rate: 5°C / min                      |
|              | Maximum temp: 220°C                          |
|              | Contact heater                               |
| Testo 805i   | Measuring range: -30°C to 250°C              |
| Smart        | Resolution: 0.1°C                            |
| Probes       | Measurement rate : 2/sec                     |
|              | Laser marking: Diffraction lens as           |
|              | laser marking                                |
|              | The testo Smart Probes App (via              |
|              | Bluetooth)                                   |
| Fluida kerja | Smooth Fluida 05 (SF-05)                     |
|              | Specific Gravimetry: 0.800 – 0.835           |
|              | $(60^{\circ}F)$                              |
|              | Viscosity: $2.5 - 3.5 \text{ mm}^2/\text{s}$ |

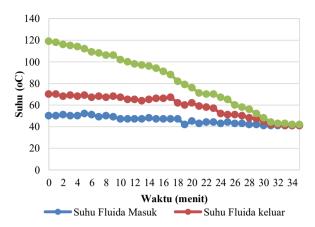



Gambar 10. Grafik suhu *material storage* dan bodi storage saat charging


Antara menit 22–26 terjadi kenaikan suhu yang signifikan pada bodi *storage*, kondisi ini terjadi akibat proses perpindahan panas pada bodi *storage* yang sudah merata dan sebagian panas dari material *storage* sudah terserap ke seluruh bagian bodi *storage*. Fenomena ini dapat dibuktikan dimana kenaikan pada material *storage* tidak signifikan pada rentang waktu yang sama dan kenaikan yang signifikan terjadi pada bodi *storage*. Kenaikan suhu yang drastis pada bodi *storage* dianggap sebagai titik kritis dan setelah melewati titik ini kenaikan suhu kembali menjadi landai sedangkan pada material *storage* kenaikan suhu terus berlanjut.



Gambar 11. Grafik suhu fluida dan material kerja saat *charging* 



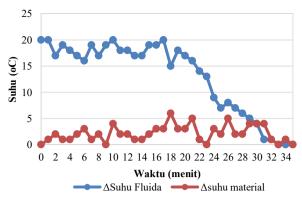

Gambar 12. Grafik perbedaan suhu fluida dan material kerja saat *charging* 



Gambar 13. Grafik suhu fluida dan material kerja saat storing

Gambar 11 menyajikan grafik hubungan antara fluida masuk dan keluar serta suhu material. Perbedaan suhu fluida masuk dan keluar pada menit 1–25 cukup tinggi yang disebabkan oleh sistem menerima panas secara cepat. Selanjutnya, kenaikan suhu fluida keluar pada menit 26–40 tidak menunjukkan kenaikan signifikan karena nilai panas pada material *storage* dan *bed storage* sudah tinggi. Suhu fluida masuk dan keluar serta suhu material *storage* sendiri menjadi landai pada menit akhir karena perpindahan panas yang terjadi kurang signifikan akibat kenaikan nilai kalor pada material *storage*.




Gambar 14. Grafik suhu fluida dan material kerja saat discharging

Gambar 12 memperlihatkan grafik dengan jelas bahwa bentuk grafik antara perbedaan suhu fluida kerja (masuk dan keluar) dengan perbedaan suhu bodi *storage* dan material kerja cenderung identik. Kedua grafik sama-sama mengalami kenaikan yang signifikan sampai dengan menit 22. Lalu nilai perbedaan antara bodi *storage* dan material turun secara drastis karena suhu bodi *storage* mengalami kenaikan signifikan (titik kritis Gambar 10) dan berangsur naik kembali setelah melewati titik kritis. Perbedaan suhu fluida kerja dan masuk tidak signifikan karena panas pada sistem sudah mengalami kejenuhan yang menyebabkan nilai perpindahan panas menurun.

Gambar 13 memperlihatkan penurunan suhu material *storage* pada pengujian statis dan dinamis. Terlihat bahwa terjadi fenomena penurunan suhu yang drastis pada rentang suhu 80–40°C pada kedua pengujian. Penurunan yang cepat disebabkan kondisi kritis dari bodi *storage* yang digunakan sebagaimana yang ditunjukan pada saat *charging* (Gambar ). Informasi penting yang bisa diperoleh adalah dengan sifat termal konduktivitas rendah dari material bodi *storage* yang digunakan, maka penurunan suhu yang terjadi cukup lama melalui konveksi natural.

Saat pengujian discharging (Gambar 14) terlihat penurunan suhu pada material terjadi secara cepat tanpa menyebabkan kenaikan yang signifikan pada fluida kerja. Saat suhu material semakin menurun, maka perbedaan antara suhu fluida masuk dan keluar menjadi semakin kecil. Sebagai perbandingan, pengujian discharging pada suhu fluida masuk berbeda dilakukan untuk melihat pengaruh dari suhu masukan fluida terhadap perbedaan suhu keluaran fluida.

Agri Suwandi, dkk: Rancang Bangun Bed Storage untuk ...



Gambar 15. Grafik perbedaan suhu fluida dan material kerja saat *discharging* 

Perbedaan suhu maksimal saat discharging (Gambar 15) antara fluida masuk dan keluar adalah 20°C sedangkan perbedaan suhu maksimal pada material uji 6°C. Karakteristik perbedaan suhu fluida dan suhu material berlangsung dengan efektif pada 18 menit pertama yang merupakan kondisi dimana kapasitas panas yang tersimpan pada material masih tinggi, seiring dengan penurunan kapasitas termal pada material storage, maka perbedaan suhu masuk dan keluar menjadi menurun secara drastis dan mencapai titik kesetimbangan dalam waktu 35 menit dengan suhu setimbang pada 41°C.

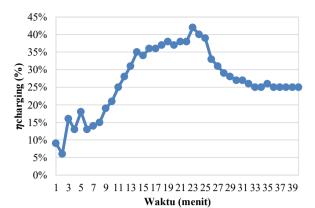
Kapasitas panas dari material *storage* dapat ditentukan berdasarkan persamaan 2, berikut [23]:

$$q_{total} = q_{sensible} + q_{laten} \tag{2}$$

dimana  $q_{sensible}$  dari besarnya panas yang mampu diserap material *sensible* (serbuk besi) diperoleh berdasarkan persamaan 3 [23].

$$q_{sensible} = m_{besi} \cdot Cp_{besi} \cdot \Delta T_{besi}$$
 (3)

Dengan massa besi 27 gram dan perbedaan suhu total 89°C, maka diperoleh


$$q_{sensible} = 27 \ g \cdot 0.444 \frac{J}{g} \cdot ^{\circ}\text{C} \cdot 89 ^{\circ}\text{C}$$
  
= 1,066 kJ  
 $q_{laten} = 243 \ g \cdot 2.62 \ J/g \cdot ^{\circ}\text{C} \cdot 89 ^{\circ}\text{C}$   
= 56,663 kJ

Maka, nilai total panas pada sistem adalah:

$$q_{total}$$
 = 1,066 kJ + 56,663 kJ  
= 57,729 kJ

Efisiensi *charging* pada sistem *bed storage* merupakan nilai perbandingan antara besarnya panas yang tersedia saat proses *charging* dan panas yang dapat diserap oleh sistem dan dapat dihitung dengan persamaan 4, berikut [24]:

$$\eta_{charging} = \frac{q_{stored}}{q_{available}}$$
(4)



Gambar 16. Fungsi efisiensi charging terhadap waktu

Tabel 11. Nilai efisiensi charging

| Waktu<br>(menit) | Fluida<br>masuk<br>T <sub>1</sub> (°C) | Fluida<br>keluar<br>T <sub>4</sub> ( <sup>o</sup> C) | Suhu<br>lingkungan<br>T <sub>x</sub> (°C) | $\eta_{charging}$ (%) |
|------------------|----------------------------------------|------------------------------------------------------|-------------------------------------------|-----------------------|
| 1                | 41                                     | 40                                                   | 30                                        | 9%                    |
| 2                | 43                                     | 42                                                   | 30                                        | 6%                    |
| 3                | 49                                     | 46                                                   | 30                                        | 16%                   |
| 4                | 53                                     | 50                                                   | 30                                        | 13%                   |
| 5                | 58                                     | 53                                                   | 30                                        | 18%                   |
| 6                | 61                                     | 57                                                   | 30                                        | 13%                   |
| 7                | 67                                     | 62                                                   | 30                                        | 14%                   |
| 8                | 71                                     | 65                                                   | 30                                        | 15%                   |
| 9                | 77                                     | 68                                                   | 30                                        | 19%                   |
| 10               | 82                                     | 71                                                   | 30                                        | 21%                   |
| 11               | 89                                     | 74                                                   | 30                                        | 25%                   |
| 12               | 97                                     | 78                                                   | 30                                        | 28%                   |
| 13               | 104                                    | 81                                                   | 30                                        | 31%                   |
| 14               | 110                                    | 82                                                   | 30                                        | 35%                   |
| 15               | 112                                    | 84                                                   | 30                                        | 34%                   |
| 16               | 118                                    | 86                                                   | 30                                        | 36%                   |
| 17               | 121                                    | 88                                                   | 30                                        | 36%                   |
| 18               | 125                                    | 90                                                   | 30                                        | 37%                   |
| 19               | 127                                    | 90                                                   | 30                                        | 38%                   |
| 20               | 129                                    | 92                                                   | 30                                        | 37%                   |
| 21               | 131                                    | 93                                                   | 30                                        | 38%                   |
| 22               | 134                                    | 95                                                   | 30                                        | 38%                   |
| 23               | 142                                    | 95                                                   | 30                                        | 42%                   |
| 24               | 143                                    | 98                                                   | 30                                        | 40%                   |
| 25               | 144                                    | 99                                                   | 30                                        | 39%                   |
| 26               | 147                                    | 108                                                  | 30                                        | 33%                   |
| 27               | 150                                    | 113                                                  | 30                                        | 31%                   |
| 28               | 150                                    | 115                                                  | 30                                        | 29%                   |
| 29               | 150                                    | 116                                                  | 30                                        | 28%                   |
| 30               | 150                                    | 118                                                  | 30                                        | 27%                   |
| 31               | 150                                    | 118                                                  | 30                                        | 27%                   |
| 32               | 150                                    | 119                                                  | 30                                        | 26%                   |
| 33               | 150                                    | 120                                                  | 30                                        | 25%                   |
| 34               | 150                                    | 120                                                  | 30                                        | 25%                   |
| 35               | 150                                    | 119                                                  | 30                                        | 26%                   |
| 36               | 150                                    | 120                                                  | 30                                        | 25%                   |
| 37               | 150                                    | 120                                                  | 30                                        | 25%                   |
| 38               | 150                                    | 120                                                  | 30                                        | 25%                   |
| 39               | 150                                    | 120                                                  | 30                                        | 25%                   |
| 40               | 150                                    | 120                                                  | 30                                        | 25%                   |
|                  | Rerata et                              | fisiensi <i>charg</i>                                | ring                                      | 26,85 %               |

Besarnya panas yang diserap dan tersedia bergantung kepada perbedaan suhu, sehingga bentuk akhir seperti pada persamaan 5 berikut [24]:

$$\eta_{charging} = \frac{\Delta T_{fluida\ charging}}{\Delta T_{fluida\ ideal}} \tag{5}$$

Nilai koefisien perpindahan panas menyeluruh dapat diperoleh melalui persamaan 6, berikut [24]:

$$q = UA\Delta T_{overall} \tag{6}$$

Luas area perpindahan panas merupakan luas *coil* pada yang dapat dihitung dengan menggunakan persamaan 7 [24].

$$A_{coil} = l_{coil} \cdot \emptyset_{luarcoil} \cdot \pi$$
= 1,772 \cdot 0,0049 \cdot 3,14
= 0,0273 m<sup>2</sup> (7)

Nilai  $\Delta T_{overall}$  adalah 47°C data uji *discharging* sehingga nilai koefisien perpindahan panas menyeluruh adalah:

$$U = \frac{q}{A\Delta T_{overall}}$$

$$= \frac{(57.729 \text{ J})/(2.100 \text{ s})}{0.0273 \text{ m}^2.47 \text{ °C}}$$

$$= 21.422 \text{ W/m}^2.\text{°C}$$

pengujian Data per-menit memberikan keuntungan untuk nilai charging tiap satuan waktu dapat diperoleh dan menunjukkan bahwa nilai charging secara umum bervariasi terhadap waktu dengan rerata 26,85%. Data pada Tabel 11 diubah ke dalam bentuk grafik fungsi efisiensi charging terhadap waktu. Dari Gambar 16 terlihat bahwa efisiensi di atas 30% berada pada rentang waktu dari menit ke 14 sampai 27. Pada rentang waktu tersebut, perbedaan suhu fluida masuk dan keluar signifikan dan menandakan bahwa cukup penyerapan panas menjadi lebih ideal pada rentang waktu ini.

## IV. KESIMPULAN

Proses rancang bangun bed storage menggunakan metode desain Pahl dan Beitz memberikan solusi penggunaan polimer termoplastik polyacetal sebagai material bodi storage membuat proses penyimpanan panas menjadi lebih lama karena nilai konduktivitas termal yang rendah. Penggunaan polimer termoplastik polyacetal sesuai dengan rencana komponen untuk temperatur rendah, unggul ditinjau dari ketahanan lelah, ketahanan melar dan ketahanan abrasi. Bahan ini juga lebih ringan daripada logam, unggul dalam ketahanan air, dan diri menguntungkan pelumasan kemampuan produksi sehingga dapat digunakan pada aplikasi pemanasan pelumas kendaraan dan dapat meredam getaran yang timbul. Efisiensi perpindahan panas menyeluruh adalah 26,85% dengan fungsi efisiensi tinggi (> 30%) berada pada menit ke-14 sampai dengan 27, sehingga rencana

aplikasi bisa diterapkan. Proses perpindahan menggunaan *coil tube* tembaga memberikan keuntungan untuk memaksimalkan koefisien perpindahan panas menyeluruh sebesar 21,422 W/m².°C. Penelitian lanjutan *bed storage* untuk *thermal management system* adalah pengujian pada lingkungan yang sebenarnya, yaitu pada kendaran kendaraan ringan serta analisis kelayakan ekonomisnya.

## REFERENSI

- [1] H. Lund, "Energy storage and smart energy systems," *Int. J. Sustain. Energy Plan. Manag.*, vol. 11, pp. 3–14, 2016.
- [2] S. Narayanan, "Thermal battery for portable climate control," *Appl. Energy*, vol. 149, pp. 104–116, 2015.
- [3] R. Nivaskarthick, "Analysis of Thermal Energy Storage system using Paraffin Wax as Phase Change Material," *Int. Conf. Innov. Eng. Technol.*, no. July, pp. 38–47, 2016.
- [4] IEA ETSAP and IRENA, "Thermal Energy Storage-Technology Brief," no. January. 2013.
- [5] A. Gautam and R. P. Saini, "A review on technical, applications and economic aspect of packed bed solar thermal energy storage system," *J. Energy Storage*, vol. 27, no. August 2019, p. 101046, 2020.
- [6] D. Dong, "Thermal optimisation of metal hydride reactors for thermal energy storage applications," *Sustain. Energy Fuels*, vol. 1, no. 8, pp. 1820–1829, 2017.
- [7] Z. He, X. Wang, X. Du, M. Amjad, L. Yang, and C. Xu, "Experiments on comparative performance of water thermocline storage tank with and without encapsulated paraffin wax packed bed," *Appl. Therm. Eng.*, vol. 147, pp. 188–197, 2019.
- [8] D. C. Adhitya, "Penambahan Pasir Vulkanik untuk Meningkatkan Sifat Termal Composite PCM sebagai Thermal Energy Storage," 2020.
- [9] A. E. Kabeel, M. Abdelgaied, and A. Eisa, "Effect of graphite mass concentrations in a mixture of graphite nanoparticles and paraffin wax as hybrid storage materials on performances of solar still," *Renew. Energy*, vol. 132, pp. 119–128, 2019.
- [10] S. Zhu, G. Yu, X. Li, W. Dai, and E. Luo, "Parametric study of a free-piston Stirling cryocooler capable of providing 350 W cooling power at 80 K," *Appl. Therm. Eng.*, vol. 174, p. 115101, 2020.
- [11] A. Dinker, M. Agarwal, and G. D. Agarwal, "Heat storage materials, geometry and applications: A review," *Journal of the Energy Institute*. 2017.
- [12] S. Soprani, "Design and testing of a horizontal rock bed for high temperature thermal energy storage," *Appl. Energy*, vol. 251, no. November 2018, p. 113345, 2019.
- [13] H. Martin, Heat Exchangers. 1992.
- [14] S. Qian, J. Yu, and G. Yan, "A review of regenerative heat exchange methods for various

- cooling technologies," *Renew. Sustain. Energy Rev.*, vol. 69, no. October 2016, pp. 535–550, 2017.
- [15] T. Richter, J. H. Witt, J. W. Gesk, and A. Albers, "Identification of requirements of methods and processes for modeling objectives in predevelopment projects," *Procedia CIRP*, vol. 84, pp. 419–427, 2019.
- [16] J. Gausemeier and S. Moehringer, "VDI 2206- A New Guideline for the Design of Mechatronic Systems," *IFAC Proc. Vol.*, vol. 35, no. 2, pp. 785–790, 2002.
- [17] G. P. and W. Beitz, *Engineering Design A Systematic Approach*, 3rd ed. 2007.
- [18] T. Surdia and M. S. Met, "Pengetahuan Bahan Teknik," *Pt Pradnya Paramita*, p. 372, 1999.
- [19] J. W. J. M. S. Priest, *Product Development and Design for Manufacturing*, Second Edi. New York BASEL: MARCEL DEKKER, INC, 2001.
- [20] A. Frazzica, M. Manzan, A. Sapienza, A. Freni, G. Toniato, and G. Restuccia, "Experimental testing of

- a hybrid sensible-latent heat storage system for domestic hot water applications," *Appl. Energy*, vol. 183, pp. 1157–1167, 2016.
- [21] S. Fischer and H. Drück, "Standards and certification schemes for solar thermal collectors, stores and systems An overview about the latest developments," *Energy Procedia*, vol. 57, no. December, pp. 2867–2871, 2014.
- [22] D. I. N. En and D. I. N. En, "EN 12977-3:2018," no. July, 2018.
- [23] M. Liu, S. Riahi, R. Jacob, M. Belusko, and F. Bruno, "Design of sensible and latent heat thermal energy storage systems for concentrated solar power plants: Thermal performance analysis," *Renew. Energy*, 2020.
- [24] D. S. Patil, R. R. Arakerimath, and P. V. Walke, "Thermoelectric materials and heat exchangers for power generation A review," *Renewable and Sustainable Energy Reviews*. 2018.