Optimal Sizing and Placement of Wind-Based Distributed Generation to Minimize Losses Using Flower Pollination Algorithm

       Dian Budhi Santoso, Sarjiya Sarjiya, Fredi Prima Sakti

Abstract


Penempatan DG dapat mempengaruhi aliran daya dan tegangan pada bus di sistem distribusi. Oleh karena itu, penempatan DG harus diperhitungkan dan direncanakan secara detail agar dapat bekerja secara optimal. Penempatan DG yang tidak optimal dapat meningkatkan losses pada sistem, sehingga berpengaruh terhadap profil tegangan yang akan menurun. Penempatan dan kapasitas DG yang optimal dapat berpengaruh kepada peningkatan profil tegangan, mengurangi losses, peningkatkan kapasitas distribusi, dan peningkatkan keandalan pada sistem. Beberapa metode optimisasi banyak yang bermunculan mulai dari optimisasi klasikal, pendekatan analitis, sampai yang terbaru yaitu metaheuristik. Salah satu metode optimisasi metaheuristik terbaru adalah Flower Pollination Algorithm (FPA) yang merupakan metode optimisasi yang terinspirasi dari proses penyerbukan bunga. FPA lebih efisien dengan menghasilkan hasil yang lebih baik dan memiliki kecepatan konvergen yang lebih tinggi jika dibandingakan dengan metode metaheuristik lainnya. Pada penelitian ini, FPA digunakan untuk menentukan lokasi dan kapasitas wind-based DG yang optimal dengan single DG dan multi DG untuk meminimalkan rugi-rugi daya pada sistem tes IEEE 33-bus dan meningkatkan profil tegangan. Untuk mengetahui kinerja dari FPA, akan dibandingkan dengan metode optimasi lain. Selain itu, jumlah dan kapasitas wind-based DG yang dipasang pada bus terpilih akan diperhitungkan. Hasil simulasi menunjukkan bahwa metode yang diusulkan telah berhasil dengan baik menentukan lokasi dan kapasitas DG.


  http://dx.doi.org/10.31544/jtera.v3.i2.2018.167-176

Keywords


Flower Pollination Algorithm; pembangkitan tersebar; losses; profil tegangan; sistem distribusi

Full Text:

  PDF

References


A. A. B. Rújula, J. M. Amada, J. M.Y. Loyo, and D. Navarro, “Definitions for Distributed Generation: a revision Keywords,” International Conference on Renewable Energy and Power Quality, March, 2005.

T. Ackermann and G. Andersson, “Electricity Market Regulations and their Impact on Distributed Generation,” Electric Utility Deregulation and Restructuring and Power Technologies, 2000. Proceedings. DRPT 2000. International Conference on. IEEE, April, pp. 4–7, 2000.

H. H. Zeineldin, S. Member, and M. M. A. Salama, “Distributed Generation Micro-Grid Operation: Control and Protection ctelygiing,” Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, 2006.

M. M. A. Salama, "Distributed generation technologies, definitions, and benefits," Electric power systems research, vol. 71, pp. 119–128, 2004.

V. Kumar, S. O. P. Rahi, V. Kumar, and J. S. Kuntal, “Optimal Placement Methods of Distributed Generation: A Review,” IEEE Transactions on Power Systems, pp. 978–981, 2012.

K. Mahesh, P. Nallagownden, and I. Elamvazuthi, “Optimal Configuration of DG in Distribution System : An Overview,” MATEC Web of Conferences, vol. 7, pp. 1–5, 2016.

A. Parizad, “Optimal Placement of Distributed Generation with Sensitivity Factors Considering Voltage Stability and Losses Indices,” 18th Iranian Conference on Electrical Engineering (ICEE), 2010.

D. Agarwal, S. A. Siddiqui, and N. K. Swarnkar, “GA based Optimal DG Placement for Power Loss Reduction and Voltage Stability Improvement,” International Journal of Engineering Research and Technology (IJERT), vol. 5, no. 4, pp. 558–563, 2016.

A. Ameli, S. Member, S. Bahrami, S. Member, and F. Khazaeli, “A Multiobjective Particle Swarm Optimization for Sizing and Placement of DGs from DG Owner’s and Distribution Company’s Viewpoints,” IEEE Transactions on Power Delivery, vol. 29, no. 4, pp. 1831–1840, 2014.

S. R. A. Rahim, I. Musirin, M. H. Sulaiman, M. H. Hussain, and A. Azmi, “Assessing the Performance of DG in Distribution Network,” IEEE International Conference on Power Engineering and Optimization Conference (PEDCO) Melaka, Malaysia, pp. 6–7, 2012.

K. Nekooei, M. M. Farsangi, H. Nezamabadi-pour, and K. Y. Lee, “An Improved Multi-Objective Harmony Search for Optimal Placement of DGs in Distribution Systems,” IEEE Transactions on smart grid, vol. 4, no. 1, pp. 557–567, 2013.

X. Yang, “Flower Pollination Algorithm for Global Optimization,” International conference on unconventional computing and natural computation. Springer, Berlin, Heidelberg, 2012.

S. Huang, S. Member, P. Gu, W. Su, X. Liu, and T. Tai, “Application of Flower Pollination Algorithm for Placement of Distribution Transformers in A Low-Voltage Grid,” IEEE International Conference on Industrial Technology (ICIT), pp. 1280–1285, 2015.

M. Musofa, M. Pambudy, S. P. Hadi, and H. R. Ali, “Flower Pollination Algorithm for Optimal Control in Multi-Machine System with GUPFC,” 6th International Conference on Information Technology and Electrical Engineering (ICITEE), 2014.

H. A. Attia, “Optimal voltage profile control and losses minimization of radial distribution feeders,” 2008 12th Int. Middle East Power Syst. Conf. MEPCON 2008, pp. 453–458, 2008.

S. Gilani, H. Afrakhte, and M. Ghadi, “Probabilistic method for optimal placement of wind-based distributed generation with considering reliability improvement and power loss reduction,” 4th IEEE Conference on Power Plants (CTPP) Thermal Power Plants (CTPP), 2012.

S. Kansal, “Optimal placement of wind-based generation in distribution networks,” IET, 2011.

E. Afzalan, M. A. Taghikhani, and M. Sedighizadeh, “Optimal Placement and Sizing of DG in Radial Distribution Networks Using SFLA,” International journal of energy engineering, vol. 2, no. 3, pp. 73–77, 2012.

M. Natarajan, R. Balamurugan, L. Lakshminara simman, and A. Nagar, “Optimal Placement and Sizing of DGs in the Distribution System for Loss Minimization and Voltage Stability Improvement using CABC,” International Journal on Electrical Engineering and Informatics, vol. 7, no. 4, pp. 679–690, 2015.

S. Naik, G. Naik, D. K. Khatod, and M. P. Sharma, “Analytical approach for optimal siting and sizing of distributed generation in radial distribution networks,” IET Generation, Transmission & Distribution, vol. 9 no. 3, pp. 209–220, 2015.




DOI: http://dx.doi.org/10.31544/jtera.v3.i2.2018.167-176
Abstract 74 View    PDF viewed = 36 View

Refbacks

  • There are currently no refbacks.