Open Journal Systems

Identifikasi Perilaku Pengemudi Berdasarkan Kontur Jalan dan Pergerakan Kendaraan Berbasis Fuzzy Mamdani

       Budi Setiadi, Tata Supriyadi, Ridwan Solihin, Varian Andika Wijayakusuma, Fryma Zhafran Raihan, Muhammad Rawdoh

Abstract


 Salah satu penyebab terjadinya kecelakaan lalu lintas karena perilaku pengemudi abnormal. Faktor kebiasaan, budaya serta situasi monoton membuat pengemudi mengabaikan gestur standar dalam berkendara kurang mempertimbangkan kondisi kontur jalan dan pergerakan kendaraan. Penelitian ini bertujuan membuat perangkat kontroler yang dapat memberikan peringatan perilaku pengemudi secara otomatis. Identifikasi perilaku pengemudi ditentukan berdasarkan kondisi kontur jalan dan pergerakan kendaraan. Kontur jalan diidentifikasi setiap waktu menggunakan sensor altimeter. Keluaran data sensor altimeter berupa perubahan titik ketinggian disimpan dalam memori sementara pengolah data dan disatukan menjadi  pola (tiga titik ketinggian) berdasarkan perubahan waktu.  Pola tersebut digunakan untuk identifikasi kondisi jalan  datar atau bergelombang. Pergerakan kendaraan diidentifikasi setiap waktu menggunakan sensor accelerometer. Metode inferensi fuzzy Mamdani memproses seluruh data masukan menjadi pengambilan keputusan dengan keluaran  himpunan N (normal), L (lelah), dan G (gegabah). Keluaran himpunan tersebut disalurkan ke perangkat motor DC dan buzzer melalui pengolah data sebagai peringatan perilaku berkendara kepada pengemudi. Hasil pengujian dengan berbagai skenario kondisi menunjukkan bahwa sistem dapat bekerja dengan tingkat keberhasilan lebih besar dari 75%.


  http://dx.doi.org/10.31544/jtera.v6.i1.2021.31-40

Keywords


perilaku berkendara; altimeter; accelerometer; inferensi fuzzy Mamdani

Full Text:

  PDF

References


B. Shi, L. Xu, J. Hu, Y. Tang, H. Jiang, W. Meng, and H. Liu, “Evaluating Driving Styles by Normalizing Driving Behavior Based on Personalized Driver Modeling,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 12, pp. 1502-1508, 2015.

B. Wu, Y. Chen, and C. Yeh, “Driving behaviour-based event data recorder,” IET Intelligent Transport Systems, vol. 8, no. 4, pp. 361-367, 2014.

C. Liu, R. Fujishiro, L. Christopher, and J. Zheng, “Vehicle–Bicyclist Dynamic Position Extracted From Naturalistic Driving Videos,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 4, pp. 734-742, 2017.

M, Jeong, B. C. Ko, S. Kwak, and J. Nam, “Driver Facial Landmark Detection in Real Driving Situations,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 10, pp. 2753-2767, 2018.

S. Al-Sultan, “Context-aware Driver Behavior Detection System in Intelligent Transportation Systems,” IEEE Transactions on Vehicular Technology, vol. 62, no. 9, pp. 4264-4275, 2013.

W. Huang, X. Liu, M. Luo, P. Zhang, W. Wang, and J. Wang, “Video-Based Abnormal Driving Behavior Detection via Deep Learning Fusions,” IEEE Access, vol. 7, pp. 64571-64582, 2019.

X. Li, M. Yu, W. Li, C. Ma, R. Gravina, and G. Fortino, “Driving Operation Recognition using Smart Cushion Based on Deep Neural Network,” EAI International Conference on Body Area Networks, Springer, pp. 325–338, 2018.

J. Hu, L. Xu, V. He, and W. Meng, “Abnormal Driving Detection Based on Normalized Driving Behavior,” IEEE Transactions on Vehicular Technology, vol. 66, no. 8, pp. 6645-6652, 2017.

J. Yu, Z. Chen, Y. Zhu, Y. Chen, Kong., and M. Li, “Fine-Grained Abnormal Driving Behaviors Detection and Identification with Smartphones,” IEEE Transactions on Mobile Computing, vol. 16, no. 8, pp. 2198-2212, 2017.

L. Xu, J. Hu, H. Jiang, and W. Meng, “Establishing style-oriented driver models by imitating human driving behaviors,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp. 2522-2530, 2015.

M. Saifuzzaman and M. Haque, “Impact Of Mobile Phone Use On Car-Following Behavior Of Young Drivers,” Accident Analysis and Prevention, vol. 82, pp. 10-19, 2015.

N. Li, T. Misu, and F. Tao, “Understand Driver Awareness Through Brake Behavior Analysis: Reactive Versus Intended Hard Brake,” Proc. IEEE Intell Vehicles Sym, vol. 4, pp. 1523-1528, 2017.

B. Setiadi, T. Supriyadi, H. Nugroho, and R. Solihin, “Navigation and Object Detection for Blind Persons Based on Neural Network,” International Journal of Applied Technology Research (IJATR), vol. 1, no. 1, pp. 56-65, 2020.

N. H. T. S. Administration. (2012) Define Aggressive Driving. [Online].

Available: http://www.nhtsa.gov/people/injury/enforce/aggressdrivers/aggenforce/define.html

X. Lin, K. Zhang, W. Cao, and L. Zhang, “Driver Evaluation and Identification Based on Driving Behavior Data,” 5th International Conference on Information Science and Control Engineering (ICISCE), pp. 718-722, 2018.

S. Kaplan, M. A. Guvensan, A. G. Yavuz, and Y. Karalurt, “Driver Behavior Analysis for Safe Driving: A Survey,” in IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 6, pp. 3017-3032, 2015.

Z. Wang, “Driver Behavior Modeling Using Game Engine and Real Vehicle: A Learning-Based Approach,” in IEEE Transactions on Intelligent Vehicles, vol. 5, no. 4, pp. 738-749, 2020.

B. Higgs and M. Abbas, “Segmentation and Clustering of Car-Following Behavior: Recognition of Driving Patterns,” in IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 1, pp. 81-90, 2015.

T. Hirayama, K. Mase, C. Miyajima, and K. Takeda, “Classification of Driver's Neutral and Cognitive Distraction States Based on Peripheral Vehicle Behavior in Driver's Gaze Transition,” in IEEE Transactions on Intelligent Vehicles, vol. 1, no. 2, pp. 148-157, 2016.

M. H. Alkinani, W. Z. Khan, and Q. Arshad, “Detecting Human Driver Inattentive and Aggressive Driving Behavior Using Deep Learning: Recent Advances, Requirements and Open Challenges,” in IEEE Access, vol. 8, pp. 105008-105030, 2020.

B. Zhu, Z. Liu, J. Zhao, Y. Chen, and W. Deng, “Driver Behavior Characteristics Identification Strategies Based on Bionic Intelligent Algorithms,” in IEEE Transactions on Human-Machine Systems,vol. 48, no. 6, pp.572-581, 2018.

C. P. Rommerskirchen, M. Helmbrecht and K. J. Bengler, “The Impact of an Anticipatory Eco-Driver Assistant System in Different Complex Driving Situations on the Driver Behavior,” in IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 2, pp. 45-56, 2014.




DOI: http://dx.doi.org/10.31544/jtera.v6.i1.2021.31-40
Abstract 49 View    PDF viewed = 18 View

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JTERA (Jurnal Teknologi Rekayasa)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright @2016-2021 JTERA (Jurnal Teknologi Rekayasa) p-ISSN 2548-737X e-ISSN 2548-8678.

     Lisensi Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

JTERA Editorial Office:
Politeknik Sukabumi
Jl. Babakan Sirna 25, Sukabumi 43132, West Java, Indonesia
Phone/Fax: +62 266215417
Whatsapp: +62 81809214709
Website: https://jtera.polteksmi.ac.id
E-mail: jtera@polteksmi.ac.id