Open Journal Systems

Optimalisasi Database 3.0 untuk Verifikasi Data Pelatihan Pelaut

       Rizal Fitrah Nugraha, Henderi Henderi, Sudaryono Sudaryono

Abstract


This study explores the optimization of Database 3.0 to enhance the registration of training participants and data verification in seafarer training programs. The increasing complexity of managing and verifying vast training data demands advanced database technologies. Database 3.0, with its capabilities for real-time updates, automated data entry, and system integration, presents a solution to these challenges. The research employs SmartPLS to model the relationships between Database Optimization, Data Accuracy, Verification Efficiency, and User Satisfaction, aiming to assess how optimization impacts the overall effectiveness of training data management. The study fills a gap in the literature by focusing on Database 3.0 optimization within the maritime training context, an underexplored area. The results indicate that optimized databases significantly improve data accuracy and verification efficiency, leading to higher user satisfaction among administrators and trainers. The findings suggest that integrating Database 3.0 into seafarer training programs can streamline data verification processes, ultimately enhancing certification reliability and operational efficiency in maritime education. These insights offer a novel perspective on utilizing advanced database technologies in specialized sectors like maritime training.

  http://dx.doi.org/10.31544/jtera.v9.i2.2024.101-112

Keywords


Database Optimization, Seafarer Training, Data Verification

Full Text:

  PDF

References


Lee, H., & Choi, Y. (2021). "Advancements in Database 3.0 for Seafarer Training Verification." Maritime Education and Training Review, 29(1), 50-65.

Dewan, M. H., & Godina, R. (2024). An overview of seafarers engagement and training on energy efficient operation of ships. Marine Policy, 160, 105980.

Mirdad, K., Daeli, O. P. M., Septiani, N., Ekawati, A., & Rusilowati, U. (2024). Optimizing student engagement and performance using AI-enabled educational tools. CORISINTA, 1(1), 53-60.

Lukita, C., Lutfiani, N., Salam, R., Pangilinan, G. A., Rafika, A. S., & Ahsanitaqwim, R. (2024, August). Technology Integration in Cultural Heritage Preservation Enhancing Community Engagement and Effectiveness. In 2024 3rd International Conference on Creative Communication and Innovative Technology (ICCIT) (pp. 1-5). IEEE.

Tusher, H. M., Munim, Z. H., & Nazir, S. (2024). An evaluation of maritime simulators from technical, instructional, and organizational perspectives: A hybrid multi-criteria decision-making approach. WMU Journal of Maritime Affairs, 23(2), 165-194.

Bhatia, B. S., Carrera-Arce, M., Baumler, R., & Grech, M. R. (2024). Seafarers vs. Port State Control: Decoding Work/rest Compliance Data Disparity. Marine Policy, 163, 106105.

Ponomaryova, V., Nosov, P., Ben, A., Popovych, I., Prokopchuk, Y., Mamenko, P., ... & Sokol, I. (2024). DEVISING AN APPROACH FOR THE AUTOMATED RESTORATION OF SHIPMASTERS NAVIGATIONAL QUALIFICATION PARAMETERS UNDER RISK CONDITIONS. Eastern-European Journal of Enterprise Technologies.

Munthe, R. G., Aini, Q., Lutfiani, N., Van Persie, I., & Ramadhan, A. (2024). Transforming Scientific Publication Management in the Era of Disruption: SmartPLS Approach in Innovation and Efficiency Analysis. APTISI Transactions on Management, 8(2), 123-130.

Rahardja, U., Wijono, S., Wahyono, T., Sembiring, I., & Widiasari, I. R. (2024, August). Effective DDoS Detection through Innovative Algorithmic Approaches in Machine Learning. In 2024 3rd International Conference on Creative Communication and Innovative Technology (ICCIT) (pp. 1-7). IEEE.

Ponomaryova, V., Nosov, P., Ben, A., Popovych, I., Prokopchuk, Y., Mamenko, P., ... & Sokol, I. (2024). DEVISING AN APPROACH FOR THE AUTOMATED RESTORATION OF SHIPMASTERS NAVIGATIONAL QUALIFICATION PARAMETERS UNDER RISK CONDITIONS. Eastern-European Journal of Enterprise Technologies.

Karimi, E., Smith, J., Billard, R., & Veitch, B. (2024). AI-based adaptive instructional systems for maritime safety training: a systematic literature review. Discover Artificial Intelligence, 4(1), 51.

Tarmizi, R., Septiani, N., Sunarya, P. A., & Sanjaya, Y. P. A.

(2023). Harnessing digital platforms for entrepreneurial success: A study of technopreneurship trends and practices. Aptisi Transactions on Technopreneurship (ATT), 5(3), 278-290.

Febriyanto, E., Rahayu, N., Pangaribuan, K., & Sunarya, P. A. (2020, October). Using blockchain data security management for E-voting systems. In 2020 8th International Conference on Cyber and IT Service Management (CITSM) (pp. 1-4). IEEE.

Okumus, D., Gunbeyaz, S. A., Kurt, R. E., & Turan, O. (2024). An approach to advance circular practices in the maritime industry through a database as a bridging solution. Sustainability, 16(1), 453.

Gao, R., An, J., Gao, W., & Liu, Z. (2024, January). A Study on Seafarers Situation Awareness in Ship Resource Management: Physiological Data Approach Based on GWO-SVM. In 2024 4th International Conference on Neural Networks, Information and Communication (NNICE) (pp. 1035-1042). IEEE.

Pambudi, A., Lutfiani, N., Hardini, M., Zahra, A. R. A., & Rahardja, U. (2023, December). The digital revolution of startup matchmaking: Ai and computer science synergies. In 2023 Eighth International Conference on Informatics and Computing (ICIC) (pp. 1-6). IEEE.

Handayani, I., Apriani, D., Mulyati, M., Zahra, A. R. A., & Yusuf, N. A. (2023). Enhancing security and privacy of patient data in healthcare: A smartpls analysis of blockchain technology implementation. IAIC Transactions on Sustainable Digital Innovation (ITSDI), 5(1), 8-17.

Qiu, S., Ren, H., Wang, D., Qu, Y., & Sun, J. (2024). Research on an educational virtual training system for ship life?saving appliances. Computer Applications in Engineering Education, 32(2), e22708.

Lutfiani, N., Wijono, S., Rahardja, U., Iriani, A., Aini, Q., & Septian, R. A. D. (2023). A bibliometric study: Recommendation based on artificial intelligence for ilearning education. Aptisi Transactions on Technopreneurship (ATT), 5(2), 109-117.

Rahardja, U., Sari, A., Alsalamy, A. H., Askar, S., Alawadi, A. H. R., & Abdullaeva, B. (2024). Tribological properties assessment of metallic glasses through a genetic algorithm-optimized machine learning model. Metals and Materials International, 30(3), 745-755.

Handayani, I., & Agustina, R. (2022). Starting a digital business: Being a millennial entrepreneur innovating. Startupreneur Business Digital (SABDA Journal), 1(2), 126-133.

Shi, K., Fan, S., Weng, J., & Yang, Z. (2024). Seafarer competency analysis: Data-driven model in restricted waters using Bayesian networks. Ocean Engineering, 311, 119001.

Dewan, M. H., & Godina, R. (2023). Roles and challenges of seafarers for implementation of energy efficiency operational measures onboard ships. Marine Policy, 155, 105746.

Elnara, A. S., Elvan, B. M., Emine, D. P., & Saraswati, F. A. (2023). Applications for systematic smart contracts on blockchain. Blockchain Frontier Technology, 3(1), 1-6.

Durlik, I., Miller, T., Cembrowska-Lech, D., Krzemi?ska, A., Z?oczowska, E., & Nowak, A. (2023). Navigating the sea of data: a comprehensive review on data analysis in maritime IoT applications. Applied Sciences, 13(17), 9742.

Yan, R., Wang, S., & Psaraftis, H. N. (2021). Data analytics for fuel consumption management in maritime transportation: Status and perspectives. Transportation Research Part E: Logistics and Transportation Review, 155, 102489.

Porres, I., Azimi, S., Lafond, S., Lilius, J., Salokannel, J., & Salokorpi, M. (2020, October). On the verification and validation of ai navigation algorithms. In Global Oceans 2020: SingaporeUS Gulf Coast (pp. 1-8). IEEE.

NaM. Duncan. Engineering Concepts on Ice. Internet: www.iceengg.edu/staff.html, 25 Oktober, 2000 [Nov. 29, 2003].

Nurhaeni, T., Handayani, I., Budiarty, F., Apriani, D., & Sunarya, P. A. (2020, November). Adoption of upcoming blockchain revolution in higher education: Its potential in validating certificates. In 2020 Fifth International Conference on Informatics and Computing (ICIC) (pp. 1-5). IEEE.

Lutfiani, N., Wijono, S., Rahardja, U., Iriani, A., & Nabila, E. A. (2022, November). Artificial intelligence based on recommendation system for startup matchmaking platform. In 2022 IEEE Creative Communication and Innovative Technology (ICCIT) (pp. 1-5). IEEE.




DOI: http://dx.doi.org/10.31544/jtera.v9.i2.2024.101-112
Abstract 120 View    PDF viewed = 16 View

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JTERA (Jurnal Teknologi Rekayasa)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright @2016-2023 JTERA (Jurnal Teknologi Rekayasa) p-ISSN 2548-737X e-ISSN 2548-8678.

��Lisensi Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

JTERA Editorial Office:
Politeknik Sukabumi
Jl. Babakan Sirna 25, Sukabumi 43132, West Java, Indonesia
Phone/Fax: +62 266215417
Whatsapp: +62 81809214709
Website: https://jtera.polteksmi.ac.id
E-mail: [email protected]