MODBUS Standard Based SCADA System in Power Generation System
Abstract
Remote Terminal Unit (RTU) is a vital control tool in the electricity industry, facilitating various jobs, including controlling Electric Power Generation Systems (SPTL). This research aims to implement SPTL Simulator control using the Supervisory Control and Data Acquisition and Distributed Control System (SCADA and DCS). The RTU can be connected to a Master Terminal Unit (MTU) equipped with Human Machine Interface (HMI) software. The advantages include real-time process monitoring, alarm history, security, and summaries that enable efficient monitoring and analysis. The RTU used is the Generic type (Gecon) with HMI software development using Visual Studio. The use of RTU and HMI is expected to improve the performance of the SPTL simulator. The system consists of several components: Variable Speed Driver (VSD), electric motor, generator, automatic voltage regulator (AVR), F/V Controller, dummy load, sensors, meters, RTU, and communication media. The results of operational testing show that the system has worked according to design without any problems or bugs occurring. Then, based on the results of system testing with gradual loading from 0%, 25%, 50%, 75%, and 100%, it shows that, in general, the system has worked well, where the transition from dummy load to main load functions well without any residual load stored in both loading systems. The stability of the frequency and cos phi values also shows good values, where the difference is minimal for frequency (0.2 Hz), and the cos phi value is consistent at 0.99.

Keywords
References
Kamal and A. Kumar, “Impact of Technology Advancement on Human Resource Performance,” Int. J. Arts, Manag. Humanit., 2013.
N. M. Gayathri and A. Kannbhiran, “Power electronics for renewable energy systems,” in Renewable Energy for Sustainable Growth Assessment, 2022. doi: 10.1002/9781119785460.ch12.
Fransiscus Xaverius Ariwibisono and Widodo Pudji Muljanto, “IMPLEMENTASI SISTEM MONITORING PRODUKSI ENERGI PLTS BERBASIS PROTOKOL MODBUS RTU DAN MODBUS TCP,” NUANSA Inform., 2023, doi: 10.25134/ilkom.v17i2.28.
Salahuddin, Bakhtiar, Yusman, and Fadhli, “Development of a High Performance Remote Terminal Unit (RTU) of Wireless SCADA System for Monitoring Performance of Micro Hydro Power Plant,” in IOP Conference Series: Materials Science and Engineering, 2020. doi: 10.1088/1757-899X/854/1/012009.
L. O. Aghenta and M. T. Iqbal, “Low-cost, open source IoT-based SCADA system design using thinger.IO and ESP32 thing,” Electron., 2019, doi: 10.3390/electronics8080822.
R. Mu’ammar, P. Nugroho, and L. Multa Putranto, “Design of SCADA based solar power plant for clean water irrigation system in remote areas,” Int. J. Eng. Technol., 2018, doi: 10.14419/ijet.v7i4.44.26867.
B. Madonsela, I. E. Davidson, and C. Mulangu, “Advances in Telecontrol and Remote Terminal Units (RTU) for Power Substations,” in 2018 IEEE PES/IAS PowerAfrica, PowerAfrica 2018, 2018. doi: 10.1109/PowerAfrica.2018.8521181.
J. P. Lahti, A. Shamsuzzoha, and T. Kankaanpää, “Web-based technologies in power plant automation and SCADA systems: A review and evaluation,” in Proceedings - 2011 IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2011, 2011. doi: 10.1109/ICCSCE.2011.6190537.
M. C. Magro, M. Giannettoni, P. Pinceti, and M. Vanti, “Real time simulator for microgrids,” Electr. Power Syst. Res., 2018, doi: 10.1016/j.epsr.2018.03.018.
J. Ma, L. Peng, and X. Dong, “Design and Practice of Data Replay in DCS Simulator of Nuclear Power Plants,” Hedongli Gongcheng/Nuclear Power Eng., 2019, doi: 10.13832/j.jnpe.2019.02.0129.
D. F. Larios, E. Personal, A. Parejo, S. García, A. García, and C. Leon, “Operational simulation environment for SCADA integration of renewable resources,” Energies, 2020, doi: 10.3390/en13061333.
P. Neis, M. A. Wehrmeister, M. F. Mendes, and J. R. Pesente, “Applying a model-driven approach to the development of power plant SCADA/EMS software,” Int. J. Electr. Power Energy Syst., 2023, doi: 10.1016/j.ijepes.2023.109336.
T. Hashiguchi, M. Saito, T. Terunuma, and T. Kawahara, “Wide-area integrated SCADA system designed to improve availability and flexibility - SCADA and operation training simulator system supplied to Electric Power Development Co., Ltd.,” Hitachi Rev., 2011.
F. Dudyrev and O. Maksimenkova, “Training Simulators in Vocational Education: Pedagogical and Technological Aspects,” Vopr. Obraz. / Educ. Stud. Moscow, 2020, doi: 10.17323/1814-9545-2020-3-255-276.
Sutanto, F. R. Iskandar, and P. I. Wahyono, “Design of power control system for automatic operation of the Kartini reactor,” in Journal of Physics: Conference Series, 2020. doi: 10.1088/1742-6596/1436/1/012066.
T. Meisner, N. Brose, D. Lehmann, H. Schwarz, K. Pfeiffer, and M. Kotte, “Combined simulation of grid and power plant operation with a pairing to a real MicroGrid,” in Proceedings of the 2022 22nd International Scientific Conference on Electric Power Engineering, EPE 2022, 2022. doi: 10.1109/EPE54603.2022.9814154.
M. Čepin, “Use of Simplified Nuclear Power Plant Simulator,” J. Energy - Energ., 2022, doi: 10.37798/2019682-3198.
A. H. J. Moreira, R. Freitas, and J. S. Esteves, “Miniature thermoelectric power plant,” in Hands-on Science (HSCI), 2006.
H. Seifi and A. R. Seifi, “An intelligent tutoring system for a power plant simulator,” Electr. Power Syst. Res., 2002, doi: 10.1016/S0378-7796(02)00047-0.
H. Firdaus, D. Suryadi, and M. Nurhayati, “SIMULATOR PEMBANGKIT LISTRIK TENAGA PIKO HIDRO UNTUK MODUL PRAKTIKUM DI LABORATORIUM KONVERSI ENERGI,” Semin. Teknol. MAJALENGKA, 2022, doi: 10.31949/stima.v6i0.744.
J. J. Duair, A. I. Majeed, and G. M. Ali, “Design and Implementation of IoT-Based SCADA for a Multi Microgrid System,” ECS Trans., 2022, doi: 10.1149/10701.17345ecst.
A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, “Evaluation of current controllers for distributed power generation systems,” IEEE Trans. Power Electron., 2009, doi: 10.1109/TPEL.2009.2012527.
F. Blaabjerg, Y. Yang, D. Yang, and X. Wang, “Distributed Power-Generation Systems and Protection,” Proceedings of the IEEE. 2017. doi: 10.1109/JPROC.2017.2696878.
P. Rodriguez, A. V. Timbus, R. Teodorescu, M. Liserre, and F. Blaabjerg, “Flexible active power control of distributed power generation systems during grid faults,” IEEE Trans. Ind. Electron., 2007, doi: 10.1109/TIE.2007.899914.
A. V. Timbus, R. Teodorescu, F. Blaabjerg, and P. Rodriguez, “Grid monitoring for distributed power generation systems to comply with grid codes,” in IEEE International Symposium on Industrial Electronics, 2006. doi: 10.1109/ISIE.2006.295712.
F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Transactions on Industrial Electronics. 2006. doi: 10.1109/TIE.2006.881997.
A. Timbus, R. Teodorescu, F. Blaabjerg, and M. Liserre, “Synchronization methods for three phase distributed power generation systems. An overview and evaluation,” in PESC Record - IEEE Annual Power Electronics Specialists Conference, 2005. doi: 10.1109/PESC.2005.1581980.
A. V. Timbus, M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, “Adaptive resonant controller for grid-connected converters in distributed power generation systems,” in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2006. doi: 10.1109/apec.2006.1620754.
DOI: http://dx.doi.org/10.31544/jtera.v10.i1.2025.1-10


Refbacks
- There are currently no refbacks.
Copyright (c) 2025 JTERA (Jurnal Teknologi Rekayasa)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright @2016-2025 JTERA (Jurnal Teknologi Rekayasa) p-ISSN 2548-737X e-ISSN 2548-8678.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
JTERA Editorial Office:
Politeknik Sukabumi
Jl. Babakan Sirna 25, Sukabumi 43132, West Java, Indonesia
Phone/Fax: +62 266215417
Whatsapp: +62 81809214709
Website: https://jtera.polteksmi.ac.id
E-mail: [email protected]