Open Journal Systems

Comparison of Random Forest and XGBoost for Diabetes Classification with SHAP and LIME Interpretation

       Mubaraqah Mubaraqah, Annisa Nurul Puteri, A. Sumardin

Abstract


Diabetes Mellitus (DM) merupakan tantangan kesehatan global yang membutuhkan pendekatan inovatif untuk deteksi dini dan manajemen yang efektif. Studi ini bertujuan untuk membandingkan algoritma Random Forest dan XGBoost dalam klasifikasi diabetes sambil meningkatkan interpretabilitas model menggunakan teknik AI yang Dapat Dijelaskan (XAI) seperti SHAP dan LIME. Metodologi ini melibatkan pemrosesan kumpulan data publik yang berisi 70.000 entri dengan 34 fitur medis, melatih model dengan parameter yang dioptimalkan, dan melakukan analisis interpretatif. Hasil menunjukkan bahwa XGBoost mencapai akurasi yang lebih tinggi (90,6%) dengan generalisasi yang lebih baik, sementara Random Forest unggul dalam efisiensi pelatihan. Analisis fitur mengidentifikasi faktor-faktor utama seperti Usia, Kadar Glukosa Darah, dan Penambahan Berat Badan Selama Kehamilan sebagai kontributor signifikan terhadap prediksi. Temuan ini memberikan panduan model yang akurat dan transparan untuk mendukung pengambilan keputusan medis.


  http://dx.doi.org/10.31544/jtera.v9.i2.2024.121-130

Keywords


Machine Learning; XAI; Diabetes Classification; Model Evaluation; Model Interpretation

Full Text:

  PDF   PDF

References


P. Saeedi, I. Petersohn, P. Salpea, et al., "Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition," Diabetes Research and Clinical Practice, vol. 157, p. 107843, 2019, doi: 10.1016/j.diabres.2019.107843.

International Diabetes Federation, IDF Diabetes Atlas, 10th ed., 2021. [Online]. Available: https://diabetesatlas.org.

Reuters, "More than 800 million adults have diabetes globally, many untreated, study suggests," Nov. 13, 2024. [Online]. Available: https://www.reuters.com/business/healthcare-pharmaceuticals/more-than-800-million-adults-have-diabetes-globally-many-untreated-study-2024-11-13/.

World Health Organization, "Diabetes," 2023. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/diabetes.

D. J. Magliano, R. M. Islam, E. L. M. Barr, et al., "Diabetes mellitus, the fastest growing global public health concern," The Lancet, vol. 403, no. 10399, pp. 1234-1245, 2024, doi: 10.1016/S0140-6736(24)00345-2.

Ciputra Hospital, "Komplikasi Diabetes Mellitus," 2022. [Online]. Available: https://ciputrahospital.com/komplikasi-diabetes-mellitus/.

A. Suherman, H. Harun, and D. Deni, "Dampak Diabetes Melitus Tipe 2 pada Fungsi Ginjal: Faktor Risiko, Gejala, dan Pentingnya Manajemen yang Tepat," Jurnal Keperawatan Thamrin, vol. 1, no. 1, pp. 15-16, 2023. [Online]. Available: https://eresources.thamrin.ac.id/1629/2/Winda%20Wardianti_S1%20Keperawatan_2024%20-%20Bab%201.pdf.

W. Wardianti, "Bab 1 Pendahuluan: Diabetes Melitus Tipe 2 dan Komplikasinya," Jurnal Keperawatan Thamrin, vol. 1, no. 1, pp. 1-16, 2024. [Online]. Available: https://eresources.thamrin.ac.id/1629/2/Winda%20Wardianti_S1%20Keperawatan_2024%20-%20Bab%201.pdf.

H. Yin, B. Mukadam, X. Dai, and N. K. Jha, "DiabDeep: Pervasive Diabetes Diagnosis based on Wearable Medical Sensors and Efficient Neural Networks," arXiv preprint arXiv:1910.04925, 2019. [Online]. Available: https://arxiv.org/abs/1910.04925.

Z. Zhang, K. A. Ahmed, M. R. Hasan, T. Gedeon, and M. Z. Hossain, "A Deep Learning Approach to Diabetes Diagnosis," arXiv preprint arXiv:2403.07483, 2024. [Online]. Available: https://arxiv.org/abs/2403.07483.

S. Hardani, "Diagnosa Penyakit Diabetes dengan Metode Forward Chaining," JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 5, no. 2, pp. 231236, 2020, doi: 10.33480/jitk.v5i2.1132.

Kementerian Kesehatan Republik Indonesia, "RSCM Luncurkan Tes Genomik Pengobatan Presisi Untuk Diabetes, Kolesterol Tinggi, dan Nutrisi," Sehat Negeriku, Dec. 23, 2024. [Online]. Available: https://sehatnegeriku.kemkes.go.id/baca/umum/20241223/4247160/rscm-luncurkan-tes-genomik-pengobatan-presisi-untuk-diabetes-kolesterol-tinggi-nutrisi/.

S. Saru and S. Subashree, "Analysis and prediction of diabetes using machine learning," International Journal of Emerging Technology and Innovative Engineering, vol. 5, no. 4, 2019.

I. Tasin, T. U. Nabil, S. Islam, and R. Khan, "Diabetes prediction using machine learning and explainable AI techniques," Healthcare Technology Letters, vol. 10, no. 1-2, pp. 1-10, 2023.

S. M. Ganie, P. K. D. Pramanik, M. Bashir Malik, S. Mallik, and H. Qin, "An ensemble learning approach for diabetes prediction using boosting techniques," Frontiers in Genetics, vol. 14, p. 1252159, 2023.

Xue, J., Min, F., & Ma, F. (2020, November). Research on diabetes prediction method based on machine learning. In Journal of Physics: Conference Series (Vol. 1684, No. 1, p. 012062). IOP Publishing.

Vijayan, V. V., & Anjali, C. (2015, December). Prediction and diagnosis of diabetes mellitusA machine learning approach. In 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS) (pp. 122-127). IEEE.

Zhou, H., Xin, Y., & Li, S. (2023). A diabetes prediction model based on Boruta feature selection and ensemble learning. BMC bioinformatics, 24(1), 224.

Zohair, M., Chandra, R., Tiwari, S., & Agarwal, S. (2024). A model fusion approach for severity prediction of diabetes with respect to binary and multiclass classification. International Journal of Information Technology, 16(3), 1955-1965.

Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: management, analysis and future prospects. J Big Data 6: 54.

Do?ru, A., Buyruko?lu, S., & Ar?, M. (2023). Model pembelajaran super ensemble hibrida untuk prediksi risiko diabetes tahap awal. Teknik & Komputasi Medis & Biologi , 61 (3), 785-797.

Salsabil, M., Azizah, N. L., & Eviyanti, A. (2024). Implementasi Data Mining Dalam Melakukan Prediksi Penyakit Diabetes Menggunakan Metode Random Forest Dan Xgboost. Jurnal Ilmiah Komputasi, 23(1), 51-58.




DOI: http://dx.doi.org/10.31544/jtera.v9.i2.2024.121-130
Abstract 30 View    PDF viewed = 51 View PDF viewed = 0 View

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JTERA (Jurnal Teknologi Rekayasa)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright @2016-2023 JTERA (Jurnal Teknologi Rekayasa) p-ISSN 2548-737X e-ISSN 2548-8678.

��Lisensi Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

JTERA Editorial Office:
Politeknik Sukabumi
Jl. Babakan Sirna 25, Sukabumi 43132, West Java, Indonesia
Phone/Fax: +62 266215417
Whatsapp: +62 81809214709
Website: https://jtera.polteksmi.ac.id
E-mail: [email protected]