Open Journal Systems

Causal Discovery of ICU Stay Length: PC Algorithm Approach with ICD-Lab Data

       Ismail Syababun Halim, Anastasia Mia Martalia, Muhammad Helmi Hibatullah, Nugraha Priya Utama, Ayu Purwarianti

Abstract


Dalam sistem pelayanan kesehatan, Unit Perawatan Intensif (ICU) merupakan komponen penting untuk menangani pasien dalam kondisi kritis yang membutuhkan pemantauan intensif. Namun, durasi rawat inap atau Length of Stay (LoS) seorang pasien di ICU biasanya sangat bervariasi dan perpanjangan LoS berdampak signifikan pada beban biaya, penggunaan sumber daya, dan efisiensi pelayanan di rumah sakit. Penelitian ini bertujuan untuk mengidentifikasi faktor kausal yang memengaruhi LoS ICU menggunakan Algoritma Peter-Clark (PC) untuk penemuan kausal atau Causal Discovery. Data yang digunakan berasal dari MIMIC-IV, sebuah basis data klinis komprehensif dari Beth Israel Deaconess Medical Center tahun 2008–2019, yang mencakup demografi pasien, kode diagnosis ICD, dan hasil pemeriksaan laboratorium. Metode yang digunakan meliputi penerapan Algoritma PC, yang dipilih karena kemampuannya pada data berdimensi tinggi dengan Fisher's Z-test untuk pengujian independensi, yang diimplementasikan pada berbagai tingkat signifikansi (ɑ = 0.01, 0.05, 0.1). Validasi dilakukan melalui 500 iterasi bootstrap untuk mengetahui stabilitas dari struktur graf kausal. Hasil analisis menunjukkan enam variabel yang secara konsisten menjadi penyebab langsung LoS ICU diantaranya admission type, APR-DRG severity, high mortality risk, category, flag, dan anchor age. Struktur kausal yang dihasilkan memberikan gambaran hubungan sebab-akibat yang stabil dan signifikan antar variabel klinis, yang dapat digunakan untuk mendukung pengambilan keputusan berbasis data dalam manajemen pasien dan alokasi sumber daya ICU. Studi ini juga menegaskan potensi pendekatan Causal Discovery dalam analitik layanan kesehatan, khususnya dalam memahami faktor determinan LoS ICU secara mendalam.

  http://dx.doi.org/10.31544/jtera.v10.i1.2025.173-182

Keywords


Unit Perawatan Intensif;Lama Rawat Inap;Penemuan Kausal;Algoritma PC;Fisher’s Z-test;MIMIC-IV

Full Text:

  PDF

References


K. K. Alharbi, T. J. Arbaein, A. A. Alzhrani, A. M. Alzahrani, S. S. Monshi, A. F. M. Alotaibi, A. I. Aljasser, K. T. Alruhaimi, S. D. K. Alotaibi, A. K. Alsultan, M. S. Arafat, A. Aldhabib, dan E. E. AbdEllatif, “Factors affecting the length of stay in the intensive care unit among adults in Saudi Arabia: A cross-sectional study,” National Library of Medicine, 2023. [Online]. Tersedia: https://pmc.ncbi.nlm.nih.gov/articles/PMC10649797.

I. Rosidawati dan S. Hodijah, “Hubungan antara lama rawat dengan tingkat kecemasan keluarga pasien di ruangan intensive care unit RSUD Dr. Seokardjo Kota Tasikmalaya,” Jurnal Kesehatan Masyarakat Unesa, vol. 7, no. 1, 2019. [Online]. Tersedia: https://doi.org/10.36085/jkmu.v7i1.308.

R. A. Fauzi, A. Y. Jufan, dan Y. Widyastuti, “Identifikasi Faktor Risiko Prediktif Prolonged Length of Stay (PLOS) di ICU RSUP Dr. Sardjito Yogyakarta,” Jurnal Komplikasi Anestesi, vol. 9, no. 1, pp. 50-57, 2023. [Online]. Tersedia: https://doi.org/10.22146/jka.v9i1.8517

Kementerian Kesehatan Republik Indonesia, (2024) Profil Kesehatan Indonesia 2023. [Online]. Tersedia: https://kemkes.go.id/id/profil-kesehatan-indonesia-2023.

N. K. A. Astiti, H. I. Kusumawati, dan Sutono, “Analisis data sistem rujukan terintegrasi (SISRUTE) di instalasi gawat darurat (IGD) infeksi RSUP Dr. Sardjito,” Jurnal Manajemen Pelayanan Kesehatan, vol. 26, no. 1, pp. 1–7, 2023.

A. Lamsaf, R. Carrilho, J. C. Neves, dan H. Proença, “Causality, machine learning, and feature selection: A survey,” Sensors, vol. 25, no. 8, p. 2373, 2025. [Online]. Tersedia: https://doi.org/10.3390/s25082373.

M. Z. Naser, “Discovering causal models for structural, construction and defense-related engineering phenomena,” Defence Technology, 2024. [Online]. Tersedia: https://doi.org/10.1016/j.dt.2024.04.007.

Y. S. R. Nur, A. Sa’adah, D. Aldo, dan Faizah, “Implementation of PC algorithm to the incidence factor of stunting disease,” dalam 2024 International Conference on Information Technology Research and Innovation (ICITRI), 2024. [Online]. Tersedia: https://doi.org/10.1109/ICITRI62858.2024.10699213.

Y. S. R. Nur, A. Sa’adah, D. Aldo, dan B. Masulah, “Causal modeling of factors in stunting using the Peter-Clark and Greedy Equivalence Search algorithms,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 10, no. 3, 2025. [Online]. Tersedia: https://doi.org/10.33480/jitk.v10i3.6184.

A. Johnson, L. Bulgarelli, T. Pollard, S. Horng, L. A. Celi, dan R. Mark, (2022) MIMIC-IV (Version 2.0). PhysioNet. [Online]. Tersedia: https://doi.org/10.13026/7vcr-e114.

H. Gong, “Evaluation and comparison of causal discovery algorithms,” Master degree project, KITopen, 2024. [Online]. Tersedia: https://doi.org/10.5445/IR/1000164209.

A. Ruiz de Villa, Causal Inference for Data Science. Shelter Island, NY: Manning, 2024.

P. Spirtes, “Introduction to causal inference,” Journal of Machine Learning Research, vol. 11, pp. 1643–1662, 2010.

A. B. Böhmer, K. S. Just, R. Lefering, et al., "Factors influencing lengths of stay in the intensive care unit for surviving trauma patients: a retrospective analysis of 30,157 cases," Crit Care, vol. 18, no. R143, 2014. [Online]. Tersedia: https://doi.org/10.1186/cc13976.

P. Spirtes, C. Glymour, dan K. Zhang, “Review of causal discovery methods based on graphical models,” Frontiers in Genetics, vol. 10, p. 524, 2019. [Online]. Tersedia: https://doi.org/10.3389/fgene.2019.00524.

R. Rahmadi, P. Groot, M. Heins, H. Knoop, dan T. Heskes, “Causality on cross-sectional data: Stable specification search in constrained structural equation modeling,” Applied Soft Computing, vol. 52, pp. 687–698, 2017. [Online]. Tersedia: https://doi.org/10.1016/j.asoc.2016.10.003.

B. Miazgowski, C. Pakulski, dan T. Miazgowski, “Length of stay in emergency department by ICD-10 specific and non-specific diagnoses: A single-centre retrospective study,” Journal of Clinical Medicine, vol. 12, no. 14, p. 4679, 2023. [Online]. Tersedia: https://doi.org/10.3390/jcm12144679

L. Hempel, S. Sadeghi, and T. Kirsten, "Prediction of Intensive Care Unit Length of Stay in the MIMIC-IV Dataset," Applied Sciences, vol. 13, no. 12, p. 6930, 2023. [Online]. Tersedia: https://doi.org/10.3390/app13126930.

J. Liu, E. Larson, A. Hessels, B. Cohen, P. Zachariah, D. Caplan, and J. Shang, "Comparison of Measures to Predict Mortality and Length of Stay in Hospitalized Patients," Nursing Research, vol. 68, no. 3, pp. 200-209, May/Jun. 2019. [Online]. Tersedia: https://doi.org/10.1097/NNR.0000000000000350.

J. Kaddour, A. Lynch, M. J. Kusner, dan R. Silva, “Causal machine learning: A survey and open problems,” 2022. [Online]. Tersedia: https://arxiv.org/abs/2206.15475.

K. Debeire, A. Gerhardus, J. Runge, dan V. Eyring, “Bootstrap aggregation and confidence measures to improve time series causal discovery,” dalam Proceedings of Machine Learning Research, vol. 236, 2024, pp. 1–28. [Online]. Tersedia: https://arxiv.org/abs/2306.08946.

Y. S. R. Nur, R. Rahmadi, dan C. Effendy, “Causal modeling between factors on quality of life in cancer patients using S3C-latent algorithm,” Journal of Information Systems Engineering and Business Intelligence, vol. 7, no. 1, pp. 74–83, 2021. [Online]. Tersedia: https://doi.org/10.20473/jisebi.7.1.74-83.

J. C. Hurley, “How to apply structural equation modelling to infectious diseases concepts,” Clinical Microbiology and Infection, vol. 28, no. 12, pp. 1567–1571, 2022. [Online]. Tersedia: https://doi.org/10.1016/j.cmi.2022.05.028.

Y. Wen, J. Huang, S. Guo, Y. Elyahu, A. Monsonego, H. Zhang, Y. Ding, dan H. Zhu, “Applying causal discovery to single-cell analyses using CausalCell,” eLife, vol. 12, p. e81464, 2023. [Online]. Tersedia: https://doi.org/10.7554/eLife.81464.




DOI: http://dx.doi.org/10.31544/jtera.v10.i1.2025.173-182
Abstract 50 View    PDF viewed = 11 View

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 JTERA (Jurnal Teknologi Rekayasa)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright @2016-2025 JTERA (Jurnal Teknologi Rekayasa) p-ISSN 2548-737X e-ISSN 2548-8678.

  Lisensi Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

JTERA Editorial Office:
Politeknik Sukabumi
Jl. Babakan Sirna 25, Sukabumi 43132, West Java, Indonesia
Phone/Fax: +62 266215417
Whatsapp: +62 81809214709
Website: https://jtera.polteksmi.ac.id
E-mail: [email protected]