Open Journal Systems

Implementasi Deteksi Adaptif Watermark Berbasis Domain Transformasi Wavelet

       Rahmawati Hasanah, Mina Naidah Gani, Rifa Hanifatunnisa, Nurul Zahra Nafila

Abstract


Kinerja suatu sistem watermarking, selain dinilai pada saat tahap penyisipan dan pengekstraksian, juga tergantung pada tahap pendeteksian. Sekarang ini telah terdapat beberapa algoritma pendeteksian blind watermark yang dapat memberikan kinerja yang baik, namun sebagian besar dari algoritma tersebut tidak optimal. Dalam penelitian ini, dibahas mengenai sistem pendeteksian optimum adaptif menggunakan pendekatan distribusi Gaussian umum dan pengujian detektor Rao pada domain transformasi wavelet. Pada sistem ini, sebelum proses pendeteksian dilakukan terhadap suatu gambar, gambar tersebut didekomposisi terlebih dahulu menggunakan Discrete Wavelete Transform (DWT) dua tingkat sehingga menghasilkan beberapa sub-band gambar. Setelah itu dihitung nilai miu, varians, dan absolute mean dari setiap sub-band gambar. Nilai parameter-parameter tersebut dibutuhkan untuk mengestimasi nilai shape parameter tiap sub-band gambar menggunakan fungsi rasio Gaussian umum agar sistem pendeteksian ini menjadi sistem pendeteksian yang adaptif.  Dari hasil penelitian, didapat gambar dengan watermark memiliki karakteristik yang berbeda dibandingkan gambar tanpa watermark. Nilai shape parameter pada sub-band HH1 gambar dengan watermark didapat sebesar 1,9085 sedangkan pada sub-band HH1 gambar tanpa watermark sebesar 1,5664. Deteksi optimum kemudian direalisasikan dengan menggunakan detektor Rao untuk menguji performa pendeteksian yang dibuat. Hasil pengujian pendeteksian watermark menunjukkan bahwa pendeteksian optimum dicapai ketika menggunakan nilai threshold antara 9-15 yang ditunjukkan dengan kecilnya nilai PFA dan PFR yang dihasilkan yaitu sekitar 10-3.


  http://dx.doi.org/10.31544/jtera.v6.i2.2021.225-236

Keywords


pendeteksian watermark; Discrete Wavelete Transform (DWT); shape parameter; distribusi Gaussian umum; detektor Rao

Full Text:

  PDF

References


X. Y. Liu, G. Kun, and W. F. Chen, “A Blind Watermarking Optimal Detection Based On The Wavelet Transform Domain,” School of Automation Engineering, University of Electronic Science and Technology of China, 2007.

Z. Li and T. Wang, “A Novel Blind Image Watermark Detection Algorithm Based on Generalized Gaussian Distribution,” in 3rd International Conference on Artificial Intelligence and Industrial Engineering (AIIE), 2017.

M. Barni, F. Bartolini, A. De Rosa, and A. Piva, “A new decoder for the optimum recovery of nonadditive watermarks,” in IEEE Trans. Image Processing, vol. 10, pp.755-766, 2001.

R. Kwitt, P. Meerwald and A. Uhl, "Lightweight Detection of Additive Watermarking in the DWT-Domain," in IEEE Transactions on Image Processing, vol. 20, no. 2, pp. 474-484, Feb, 2011.

A. Mairgiotis, C. Koliopanos, and L. P. Kondi, “Rao based watermark detector through two-level hierarchical prior in transform domain,” in PCI 2017: Proceedings of the 21st Pan-Hellenic Conference on Informatics, No. 33, pp. 1-6, 2017.

H. Bi, Y. Liu, M. Wu, and Y. Ge, “NSCT Domain Additive Watermark Detection Using RAO Hypothesis Test and Cauchy Distribution,” in Hindawi Publishing Corporation Mathematical Problems in Engineering, 2016.

A. Mairgiotis, L. P. Kondi and Y. Yang, "Weak Signal Watermark Detection Through Rao-T Hypothesis and Lightweight Detection," in 25th IEEE International Conference on Image Processing (ICIP), pp. 1698-1702, 2018.

S. Muthumanickam and C. Arun, “An efficient blind detection watermarking algorithm using range conversion method,” Springer-Verlag GmbH Germany, Microsyst Technol (2018) 24:1565–1575, 2017.

A. R. Hakim, “Analisa Perbandingan Watermarking Image Menggunakan Discrete Wavelet Transform,” Universitas Indonesia, 2012.

I. Pertiwi, “Implementasi Watermarking Citra Digital Menggunakan Discrete Wavelet Transform,” Politeknik Negeri Bandung, 2011.

M. Gonzalez-Lee et al., "Exploring the Cross-Correlation as a Means for Detecting Digital Watermarks and Its Reformulation Into the Fractional Calculus Framework," in IEEE Access, vol. 6, pp. 71699-71718, 2018.

(2021) Math24 website [Online]. Available: https://www.math24.net/probability-density- function

M. Ruswiansari, A. Novianti, and Wirawan, “Implementasi Discrete Wavelet Transform (DWT) Dan Singular Value Decomposition (SVD) Pada Image Watermarking,” Jurnal Elektro Telekomunikasi Terapan, Juli, 2016.

B. Ahmaderaghi, F. Kurugollu, J. Rincon, and A. Bouridane, "Blind image watermark detection algorithm based on discrete shearlet transform using statistical decision theory,” IEEE Transactions on Computational Imaging (4), pp. 46-59, 2018.

H. Bi , Y. Liu, Y. Ge, Y. Zhang, and M. Wu, “Watermark Detection in NSCT-Domain,”, The Open Cybernetics & Systemics Journal, 10, 1-12, 2016.

K. Zebbiche, F. Khelifi, and K. Loukhaoukha, “Robust additive watermarking in the DTCWT domain based on perceptual masking,”, Multimed Tools Appl, 77:21281–21304, 2018.




DOI: http://dx.doi.org/10.31544/jtera.v6.i2.2021.225-236
Abstract 31 View    PDF viewed = 5 View

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JTERA (Jurnal Teknologi Rekayasa)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright @2016-2021 JTERA (Jurnal Teknologi Rekayasa) p-ISSN 2548-737X e-ISSN 2548-8678.

     Lisensi Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

JTERA Editorial Office:
Politeknik Sukabumi
Jl. Babakan Sirna 25, Sukabumi 43132, West Java, Indonesia
Phone/Fax: +62 266215417
Whatsapp: +62 81809214709
Website: https://jtera.polteksmi.ac.id
E-mail: jtera@polteksmi.ac.id